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In this note we present a proof of a theorem to be found in Ehrig and Mahr [3).
The theorem states that a relation constructed from a given function is a congruence
relation if that function is a homomorphism: we go on to generalise this result to the
relational homomorphisms treated by the first author in [1]. Specifically, we prove
that. a congruence relation can be constructed from a relational homomorphism. Our
construction generalises that of Ehrig and Mahr. The significance of this note lies
both in the economy of our calculations and in the novel use we make of weakest
prespecifications.

We have been unable to extend the theorem to an equivalence: we offer the remaining
half of the equivalence as a challenge to the reader.

We consider a type T defined according to the paradigm T = p(r : F). where F is a
relator (such types are special cases of Hagino types’. details of which may be found
in Hagino 14]). For the purposes of this note, the important properties of a relator F are
the following.

• if a is a type, then OF is a type;

o if f é a ~— iS is a function, then there is a function fF E reF —

• if R e a -~ 19 is a relation, then there is a relation RF E OF -~ SF;

o o SF (RoS)~, for R and S either functions or relations (in fact, we shall
adopt the position that functions are special cases of relations, with the property
that x(f)y x = f.y: hence composition of relations and of functions is the
same thing):

o JF I. where I denotes the identity relation of the appropriate type:

o if R D S. then RF D SF: and

o (RF) = (R~)F, where R~ denotes the reverse of relation R: i.e.. for all x and p
of the appropriate types. x(R)y y(R)x.

The type T can be viewed as the least fixed point of the relator F. whose constructor
is the total function r e T .— T~. The type enjoys the following unique extension
property: given R E 19 -. ~SF, there is a unique relation ~[RJ) e 19 -.~ T which satisfies

(1) ~JR))OT=RO~R])F.
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~\Ioreover. if R is a function, so too is IJR)). —

As already remarked, we consider functions to be special cases of relations: their D ~ functionality of r
additional properties are captured in the following definition. ~ o ru o fu f o r

Definition 1 (total functions) That f is a function is expressed by = { ieverse
r (for)u o f o

(functionality) I ~ f o fu = { (1), twice }
To(gofF)uogofF

and that it is total by reverse )
T o fFu o o g ° fF

(totality) f’ f ~ I. { totality of g; relators
T 0 (fuof)F

Moreover, f is injective if fu is functional, and f is surjective if fu is total. U
(~): Suppose now that fu o f is a congruence relation: i.e.

Definition 2 ForR Eo -~ ,3andS e ~ 6,therelationR *—S é (04— ‘y)—’ (34— ~)
is defined by: for all f and g, (2) fu o f r D r o (fuof)F.

f(R ~— S)g R g D f o S. We have to find g E 3 — ,3F such that ~g]) = f. From type considerations alone ~ are
led to the following choice: g ~ f o r o (fu)F and we must show

U
(3) for gofF

This overloading of the — operator as a constructor of both types and relations has been
used severally by Wadler, de Bruin and Backhouse [6.2.1] to investigate properties of whence by the unique extension property. ~g[) = f. and thus f is a homomorphism. We
polymorphic functions. Such overloading encourages us to confuse types and relations prove (3) by mutual inclusion:
yet further and write e e R if e(R)~.

The relational calculus allows us to formulate the following elegant definition of f~
congruence relations. { defn. ~

f o r o (fu)F o fF

Definition 3 (congruence) Relation R 6 T 7’ is a congruence relation if it is an = { relators }
equivalence relation and respects the structure of 7’: that is. if R is reflexive: R ~ I. f ° r o (fuof)F

transitive: R D R o R. symmetric: R = Ru. and furthermore r 6 R ~— RF. D totality off; monotonicity; identity
Q for

Elementary properties of equivalence relations will be assumed, namely: R is reflexive So far we have not used that fu 0 f is a congruence; we do need that assumption to
if Ru is reflexive, and R is transitive if Ru is transitive, prove the other inclusion:

We now prove the theorem on congruence relations from Ehrig and Mahr ([3). p. 77). • fF

Theorem 4 (induced congruences) For total functions f 6 B ~— ‘T, fu .f is a { defn. g. relators
congruence relation if and only if f is a homomorphism. .1 r o (fuof)F

Proof: by mutual implication. c { (2)
(~): It is straightforward to show that fu o f is an equivalence relation, for all functions f o fu 0 f o r

we prove only that a homomorphism f = ag]) respects the structure of 7’; i.e.. ç { functionality of f
~ (fuof) : (fuof)F. By definition 2. this means we have to show that o r

fu 0 f 0 ‘r D r 0 (fuof)F. Note that, in generai, g need not be a t.otal function, since it makes use of fu. However.
functionality of g follows straightforwardly from the property that fu of is a congruence;

We calculate as follows: a sufficient condition for g to be total is that f be surjective.
U
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In the above, a congruence relation was constructed from a functional homomor
phism; we now turn to the question of whether it is possible to generalise this to the
construction of a congruence relation from a relaiionai homomorphism. We formulate
the generalised construction with the aid of the following definition.

Definition 5 For a relation R E o B. the relation R’~ ç 8 8 is defined by the
following prolerty: for all S,

C

Rt D S RD RoS.

The relation Rt is the “weakest prespecification” R\R of Hoare and He Jifeng (see [5));
its equational presentation lends itself well to the sort of calculational style of proof in
which we are interested.

Theorem 6 fu f f~.
Proof: we first note that for all R. fu o f D R f D 1 o

f ~ foR
( monotonicity )

fu o f D fu o f o R
{ totality off

fu o f ~ R
{ monotonicity )

f o fu o f ~ f o R
{ functionality of f

f D foR

Hence, by definition 5, fu o f = fi.
C

Property 7 Rt is reflexive.
Proof: R ~ R I, hence by definition 5, R~ ~ I.
C

Property S R ~ R o RI.
Proof: Rj D RI. hence by definition 5. R D R o RI.
C

Property 9 Rt is transitive.
Proof:

RI ~ Rt o RI
{defn.5)

R ~ R o Ri RI
property S. twice

R~R

Corollary 10 (Rf) fl (Rt)u is an equivalence relation.
Proof: intersection preserves refl~xivitv and transitivity.
C

Since Rf is not in general symmetric, we have had to take the intersection of Rf with
its own reverse to obtain symmetry. Note however that if R is a total function, then
(Rf) fl (Rf)u Rf, so taking the intersection is simply a generalisation of the previ
ous construction. We have, then, constructed an equivalence relation, but is it also a
congruence relation? The following lemmata allow us to give a positive answer.

Lemma 11 r ~ R — RF r ~ Ru — (Ru)F.
Proof:

r E R — Ri’
{defn.2)

Ror D TORF

reverse; relators
ru o Ru D (Ru)F 0 Tu

{ inonotonicity: functionality and totality of
Ruor D ro(Ru)i’

{defn.2}
r E Ru ~— (Ru)c

This shows r E RF R ~ é (Ru)i’ — Ru: since R was arbitrary, we may replace
it by Ru and so obtain the desired equivalence.
C

Lemma 12 If R is a homomorphism, then r E RI f— (Rf)F.
Proof: Let R be the homomorphism ~SJ).

E Rj ÷— (Rf)s
{defn.5}

RI o r D r o (Rf)c

{ monotonicity; totality of r }
~ ro(Rf)soru

{defn.5}
R ~ R o r o (Rj)s o ru

{(l)}
R D S o Rr o (Rf)s 7u

relators
R D S o (R o Rf)F 0 ru

{ property S
R ~ SORFOTO

{ monotonicity; functionality of
R o r D S o Ri’

{(i)}
true

C

true
C
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Lemma 13 IfTER—RFandrE 5~SF.thenre(RflS)4—(RflS)F.
Proof: Assume the antecedents: i.e.,

(4) Ror D TORF

(5) Sor D roSF

then we calculate:

(RnS)
= { set theory, r is a function

(R r) fl (S o r)
D { (4) and (5); snonotonicity

(r o RF) n (r o SF)

{ set theory
r o (RF fl SF)

D { monotonicitv of relators
ro (Rn S)r

C

Corollary 14 If R is a relational homomorphism then (Rt) n (Rt)~ is a congruence
relation.
C

The open question that we leave to the reader is whether every congruence relation
on T can be expressed in the form (Rf)n(Rt)~. where R is a relational homomorphism.

Acknowledgement: Peter de Bruin pointed Out to us that the component g of the
homomorphism constructed in the proof of theorem 4 is not necessarily total.
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