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Allegories

Categorical formulation of (point-free) relation algebra.

Category (objects A, B, C, arrows —”relations”— R, S)

R◦S : A←B ⇐ R : A←C ∧ S : C←B ,

idA : A←A .

Arrows of same type are partially ordered by ⊆.

S1◦T1 ⊆ S2◦T2 ⇐ S1 ⊆ S2 ∧ T1 ⊆ T2 .

X ⊆ R ∧ X ⊆ S ≡ X ⊆ R∩S .

Converse

R∪ ⊆ S ≡ R ⊆ S∪ ,

(R◦S)∪ = S∪ ◦R∪ ,

R◦S ∩ T ⊆ (R ∩ T◦S∪)◦S .
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Relator

Relator: functor that is monotonic and respects converse.

Let A and B be allegories. A mapping F from objects of A to objects
of B and arrows of A to arrows of B is a relator iff

F.R : F.A← F.B ⇐ R : A←B ,

F.R ◦ F.S = F.(R◦S) for each R : A←B and S : B←C ,

F.idA = idF.A for each object A ,

F.R ⊆ F.S ⇐ R ⊆ S for each R : A←B and S : A←B ,

(F.R)∪ = F.(R∪) for each R : A←B .

Examples: List is an endorelator. × is a binary relator.
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Functions

Relation R : A←B is total iff

idB ⊆ R∪ ◦R ,

and relation R is single-valued or simple iff

R ◦R∪ ⊆ idA .

A function is a relation that is total and simple.
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Relators preserve totality

(F.R)∪ ◦ F.R

= { relators respect converse }

F.(R∪) ◦ F.R

= { relators distribute through composition }

F.(R∪ ◦R)

⊇ { assume idB ⊆ R∪ ◦R, relators are monotonic }

F.idB

= { relators preserve identities }

idF.B .

Similarly, relators preserve simplicity. Hence relators preserve
functions.
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Parametricity — point-free

Recall

(f, g) ∈ R←S ≡ 〈∀ c,d :: (f.c , g.d)∈R ⇐ (c, d)∈S〉 .

Point-free:

(f, g) ∈ R←S ≡ f∪ ◦R ◦g ⊇ S .

Equivalently, using shunting rule:

(f, g) ∈ R←S ≡ R◦g ⊇ f◦S .
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Relators are Parametric

Type:

F.R : F.A← F.B ⇐ R : A←B .

That is,

F : 〈∀α,β :: (F.α ← F.β)← (α←β)〉 .

F is parametric iff, for all relations R and S, and all functions f and g,

(F.f , F.g) ∈ F.R← F.S ⇐ (f, g) ∈ R←S .

Exercise: verify that this is the case using point-free definition of
R←S.
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Natural Transformations

Parametricity of reverse function, rev, on lists, and of fork:

List.R ◦ revB ⊇ revA ◦List.R

R×R ◦ forkB ⊇ forkA ◦R

In fact,

List.R ◦ revB = revA ◦List.R .

But, it is not the case that, for all R,

R×R ◦ forkB = forkA ◦R .

For example,

{(0, 0) , (1, 0)} × {(0, 0) , (1, 0)} ◦ forkB 6= forkA ◦ {(0, 0) , (1, 0)} .

fork is a (lax) natural transformation, rev is a proper natural
transformation.
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Natural Transformations

θ : F←↩G = F.R ◦θB ⊇ θA ◦G.R for each R : A←B
θ : F ↪→G = F.R ◦θB ⊆ θA ◦G.R for each R : A←B .

Facts:

(F.f ◦θB = θA ◦G.f for each function f : A←B) ⇐ θ : F←↩G .

In a “tabular allegory”,

θ : F←↩G ⇐ (F.f ◦θB = θA ◦G.f for each function f : A←B) .

In words, θ : F←↩G iff θ is a (categorical) natural transformation in
the underlying category of maps.

Conclusion: we take θ : F←↩G to be the definition of a natural
transformation in an allegory.
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Division

An allegory is locally complete if for each set S of relations of type
A←B, the union ∪S : A←B exists and, furthermore, intersection
and composition distribute over arbitrary unions.

⊥⊥A,B is the smallest relation of type A←B and >>A,B is the largest
relation of the same type.

In a division allegory, composition distributes through union. That
is, there are two division operators “\” and “/”, such that, for all
R : A←B, S : B←C and T : A←C,

R◦S ⊆ T ≡ S ⊆ R\T ,

R◦S ⊆ T ≡ R ⊆ T/S ,

S ⊆ R\T ≡ R ⊆ T/S .
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Domain and Range

The range of a relation R is the set of all x such that (x,y)∈R for
some y.

Formally, the range operator “<” is defined by, for all R : A←B and
all X ⊆ idA,

R< ⊆ X ≡ R ⊆ X ◦>>A,B .

The domain R> is defined by

R> = (R∪)< .
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Membership

The membership relation of a relator F is a family of relations memA,
indexed by objects A, such that

memA : A← F.A , and

for all A, all X⊆ idA and Y⊆ idF.A,

F.X ⊇ Y ≡ (memA◦Y)< ⊆ X .

In words, F.X is the largest subset Y of F-structures, each of type F.A,
such that the data stored in elements is in the set X.
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Weakest Liberal Precondition

For all X⊆ idA and Y⊆ idF.A,

(memA◦Y)< ⊆ X

= { definition of range }

memA ◦Y ⊆ X ◦>>

= { division }

Y ⊆ memA\(X ◦>>)

= { Y⊆ idF.A }

Y ⊆ memA\(X ◦>>) ∩ idF.A .

For those familiar with the wp calculus: memA\(X ◦>>) ∩ idF.A is the
weakest liberal precondition guaranteeing a state satisfying X after
“execution” of mem.
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Properties of F structures

For all A, all X⊆ idA and Y⊆ idF.A,

F.X ⊇ Y ≡ memA\(X ◦>>) ∩ idF.A ⊇ Y .

So,

F.X = memA\(X ◦>>) ∩ idF.A .

Interpreting X⊆ idA as a property of values of type A, F.X is a
property of values of type F.A. The identity says that a property of
an F-structure is characterised by properties of the values stored in
the structure (its “members”).
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Largest Natural Transformations

Recall: for each object A,

memA : A← F.A .

Membership is parametric: for all R,

R◦mem ⊇ mem ◦ F.R .

Equivalently,

mem : Id←↩ F .

Also,

mem\id : F←↩ Id .

Theorem: The fan of relator F, mem\id, is the largest natural
transformation of type F←↩ Id. The membership of relator F is the
largest natural transformation of type Id←↩ F.
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Understanding Natural Transformations

Theorem: Suppose F and G are relators with memberships mem.F

and mem.G respectively. Then the largest natural transformation of
type F←↩G is mem.F\mem.G.

Interpretation: A natural transformation of type F←↩G changes
structure only. Stored values may be lost or duplicated, but no
computation is performed on them.

A proper natural transformation to F from G changes the structure
without loss or duplication of stored values.


