A constraint satisfaction problem (CSP) consists of
- a set of variables \(\{x_1, x_2, \ldots, x_i\} \);
- a finite set of domain \(D \) (possible values) for each variable;
- a set of constraints \(C \) restricting the values that the variables can simultaneously take

CSP is to assign values to variable so that all constraints are satisfied
CSP/COP – Approaches

- **Constraint programming techniques**
 - Systematic search on search trees + constraint based techniques
 - We’ll concentrate on CP in this module

- **Artificial intelligence search algorithms**
 - “move” within search space to promising solutions
 - Content of “Planning & Search” G52PAS
Constraint Programming

- Constraint programming techniques solve CSPs by using the combination of
 - Systematic search
 and
 - Constraint satisfaction techniques
Constraint Programming

- Systematic search
 - Generate and Test
 - Search tree
 - Backtracking

G53CLP – Constraint Logic Programming
Constraint Programming

- Constraint satisfaction techniques
 - Constraint propagation
 - Consistency check
 - Search strategies
 - Look back
 - Forward checking
 - Search orders
 - B & B (for constraint optimisation problems)
Systematic Search

- **Search space**
 - All possible states (solutions) which a search could arrive at

- Systematically search through a search space of all possible assignment of values to variables
 - It is complete
 - Either a solution is guaranteed
 - Or no solution exist
Systematic Search – G&T

- Generate-and-test (GT)
 - enumerate all possible combinations of values for variables one by one and see if they satisfy all constraints
Systematic Search

- Generate-and-test (GT)

REPEAT
- Select the next variable
- Assign a value to the variable
- If current assignment lead to a failure (dead-end: no values are consistent with previous values)
 - Backtrack (replace the value assigned for previous variable with a new value)

UNTIL a (no) complete solution is found
Systematic Search – Search Tree

- Search Tree represents the state of search
 - Node: partial solution
 - Branch: possible assignment of values to variables
 - Labelling: assign one value to a variable (taking one branch)
 - Dead-end: no further values can be assigned to the variable

We can now find the solution by searching on the search tree.
Systematic Search – Search Tree
Systematic Search – Search Tree

\[\ldots nd \ldots \]

\[nd^{*}(n-1)d \ldots \]

\[nd^{*}(n-1)d^{*}(n-2)d \ldots \]

\[n!d^n \]
Systematic Search – Search Tree

- How is the size of CSP measured
 - Number of variables
 - Size of domains for the variables
 - Number of constraints

- Number of leaves in the search tree $n! \times d^n$
Systematic Search – Search Tree

- Properties of CSP’s search tree

 - The depth of the tree is fixed
 - Solution will always be at the n^{th} level
 - The graph coloring example

 - The size of domains
 - Branching factor – average number of branches
Systematic Search – Search Tree

- Properties of CSP’s search tree
 - Sub-trees are similar
 - This is useful for learning during the search
 - Same failure could be avoided at similar sub-trees
Systematic Search – Search Tree

Properties of CSP’s search tree

- The size of the search space for a problem is finite
 - Total number of leaves is fixed for a problem
 - However the internal nodes are different
 - Try the graph coloring problem search tree with different orderings of variables labelled
Systematic Search – Search Tree

- Depth first search
Systematic Search – Backtracking

- Backtracking
Systematic Search – Backtracking

- Revising past labels
 - Label one variable at a time
 - If current value is incompatible
 - Take an alternative value
 - If all values are tried
 - Un-assign the last variable

- Until
 - All variable labelled
 - No more label to backtrack to
Systematic search with backtracking
Tsang. (1996) Foundations of Constraint Satisfaction
Systematic Search – Backtracking

- Pure backtracking
 - is very inefficient
 - complexity is exponential
 - may explore branches which likely lead to infeasible solutions (dead-ends)
Systematic Search – Backtracking

- Pure backtracking

- Thrashing: repeat the same failed assignment
- Redundant: conflict values of variables not remembered
- Detection of conflict at later stage: after exploring large number of branches
Constraint Satisfaction Techniques

- Aim at
 - Avoid as much as possible backtrackings
 - Speed up the search

Idea search: backtrack free
Constraint Satisfaction Techniques

- Constraint propagation
 - Consistency enforcing
 - Arc consistency, path consistency

- Search strategies
 - Back and forward checking
 - Variable and Value ordering
 - Branch & bound (B&B)
 - Constraint optimisation techniques
Summary

- Solving CSP using CP
 - Systematic search
 - Search tree
 - Backtracking
 - Techniques
 - ...

G53CLP – Constraint Logic Programming

Dr R. Qu