G53CLP
Constraint Logic Programming

Dr Rong Qu

Introduction to Scheduling Problems
Scheduling – Definition

- Given
 - A number of machines, \(M_i, i = 1, \ldots, M \);
 - A number of jobs, \(J_j, j = 1, \ldots, N \).

 The optimal allocation or assignment of resources, over time, to a set of tasks or activities
 - usually subject to a set of constraints (restrictions)

- Scheduling problems can often be modeled as CSP (or constraint optimization problem, COP)
Scheduling – Example

Given

- 3 machines, \(M_i \), \(i = 1, ..., 3 \);
- 9 jobs, \(J_j \), \(j = 1, ..., 9 \).

The optimal allocation or assignment of jobs to machines over time

- subject to the precedence constraints

Most common objective
- Minimise the completion time of all jobs (i.e. makespan)
Solving CSP/COP – Approaches

- **Constraint programming techniques**
 - Systematic search on search trees + constraint based techniques
 - Content of “Constraint Logic Programming” G53CLP
 - Based on basic search techniques on search tree
 - Part of content of “Introduction to AI” G51IAI

- **Artificial intelligence search algorithms**
 - “move” within search space to promising solutions
 - Content of “Planning & Search” G52PAS
Solving CSP/COP – Approaches

Four criteria to evaluate how good search techniques are

- Completeness
- Time complexity
- Space complexity
- Optimality
Solving CSP/COP – Approaches

AI Search algorithms

- Not complete
- Not guarantee to find (optimal) solution
- Work well on large scale problems (when good enough rather than optimal solutions are needed)
- Usually difficult to evaluate time and space complexity

- Based on *search space* of possible solutions approachable by neighborhood “moves”
 - Partially explored by searching algorithms
Solving CSP/COP – Approaches

AI Search algorithms

- Start (usually) from complete solutions
- Modify the solutions by changing and accepting the new solution
- Return the best/satisfactory solution
Solving CSP/COP – Approaches

- AI Search algorithms
 - Search space
 - all possible solutions approachable by neighborhood moves
 - Neighborhood moves
 - operators that modify values of certain elements in complete solutions
Solving CSP/COP – Approaches

- AI Search algorithms

- Search space
 - all possible neighborhood

- Neighborhood
 - Operators that modify values of certain elements
Solving CSP/COP – Approaches
Solving CSP/COP – Approaches

AI Search algorithms

- **Simulated Annealing**
 - accept worse solutions by probability, which is higher at the beginning and lower at the end of the search

- **Tabu Search**
 - use memory to remember previous moves, so as not to go back revisit visited solutions
Solving CSP/COP – Approaches

- AI Search algorithms
 - Genetic Algorithms
 - simulate the evolution process by crossover and mutation within populations of individuals (solutions)
 - Ant Algorithms
 - use pheromone as guidance of search towards promising and better solutions
Solving CSP/COP – Approaches

- Constraint programming techniques
 - It is complete
 - Guarantee to find the (optimal) solution(s) if one exists
 - Computational time and space may be expensive for large scale problems

- Based on systematically organised search tree consists of all solutions
Solving CSP/COP – Approaches

- Constraint programming techniques
 - Search tree
 - All possible solutions systematically organised and explored
Constraint Programming

- We’ll concentrate on CP in this module
 - Theory of CP (lectures)
 - Practical of CP (case study and exercises in ILOG Solver using OPL)
 - Research on constraint based scheduling

- Slight touch on AI search algorithms and scheduling
 - To build the context among different modules in the school

- Recent research
 - hybridise AI search algorithms with constraint based techniques
Summary

- Scheduling problem
 - Definition
 - Approaches
 - CP
 - AI search algorithms