G53CLP
Constraint Logic Programming

Dr Rong Qu

Constraint Propagation - Consistency Enforcing
Some Definitions

- Constraint satisfaction techniques
 - Constraint propagation
 - Basic idea: remove \textit{values} from domains and tighten constraints
 - Use the current information on constraints to derive new constraints
 - Can be used to fully solve the problems
 - Search techniques
 - ...
Some Definitions

- Constraint Graph (Constraint Network)
 - Binary CSPs
 - If all the constraints of a CSP affect two variables
 - The variables and constraints can be represented in a *constraint graph (constraint network)*
 - nodes represent variables
 - edges represent constraints
Arc Consistency – definition

- The arc \(\{x, y\} \) is arc consistent if
 - For each value \(a \) in the domain of \(x \)
 - There is a value \(b \) in the domain of \(y \)
 - Assignment \(x = a, y = b \) satisfy constraint \(C_{xy} \)

\[\forall a \in X, \exists b \in Y, (a, b) \in C_{x, y} \]
Arc Consistency – definition

Question:

\{x, y\} is arc consistent \rightarrow \{y, x\} is arc consistent?

\forall a \in X, \exists b \in Y, (a, b) \in Cx, y

\forall b \in Y, \exists a \in X, (b, a) \in Cy, x
Arc Consistency – definition

A CSP is arc consistent iff every arc in its constraint graph is consistent

\[\forall a \in X, \exists b \in Y, (a, b) \in Cx, y \]
Arc Consistency – example

x = \{\text{red, green, blue}\}

\begin{itemize}
 \item y = \{\text{red}\}
 \item z = \{\text{green, blue}\}
\end{itemize}

variables \(x, y\) and \(z\)

domains as given

constraints: not the same colour (value)

\{x, y\}, \{y, z\}, and \{x, z\}

\{y, x\}, \{z, y\}, and \{z, x\}
Arc Consistency – algorithms

- **Aim to**
 - Effectively remove many inconsistent labellings (values of variables) before the search, or at early stage of the search
 - Produce a CSP that is equivalent to the original one

- **So that**
 - The size of CSPs is reduced so as easier to solve
 - Constraint propagation, problem reduction ...
Arc Consistency – algorithms

- Implementation
 - repeatedly restrict the domains of the variables until the property holds true
 - examine each arc in turn and delete the values of the first node that does not match to any value of the second variable

- the deletion may change the situation of the whole graph, so arcs may need to be examined again
Arc Consistency – example

variables
x, y and z
domains
as given
constraints: not the same colour (value)
{x, y}, {y, z}, and {x, z}
{y, x}, {z, y}, and {z, x}
Arc Consistency – example

Variables: \(x, y \) and \(z \)

Domains: as given

Constraints: not the same colour (value)
- \(\{ x, y \}, \{ y, z \}, \) and \(\{ x, z \} \)
- \(\{ y, x \}, \{ z, y \}, \) and \(\{ z, x \} \)

\(x = \{ \text{red}, \text{green}, \text{blue} \} \)

\(y = \{ \text{red} \} \)

\(z = \{ \text{green}, \text{blue} \} \)

\(\{ x, y \} \) consistent

\(\{ x, z \} \) consistent

\(\{ y, z \} \) consistent?
Arc Consistency – AC-1

PROCEDURE AC-1(Z, D, C) // D: domains, C: constraints
BEGIN

Achieve node consistency

Construct the constraint list Q

REPEAT

Changed ← False;

FOR each item in Q

 Changed ← Revise(x→y, (Z,D,C)) // Revise deletes all values from Dx if they are not compatible with Dy; D may be reduced (arc consistency on {x,y})

UNTIL NOT Changed

Return (Z, D, C)

END

- Foundations of CS, Tsang, 2003
Arc Consistency – AC-1

Construct the constraint list \(Q \)

\[
Q \leftarrow \{ x \rightarrow y \mid C_{x,y} \in C \}
\]

\{x, y\}: every arc in the problem

If \(C_{x,y} \) is a constraint in the problem
both \(x \rightarrow y \) and \(y \rightarrow x \) are added to \(Q \)
Arc Consistency – AC-1

- AC-1 algorithm*
 - Not efficient to execute Revise
 - Removing any value will cause all items (even those not affected) in constraint list Q to be re-examined
 - Very time consuming

*Mackworth (1977)
Arc Consistency – AC-3

- Improved: AC-3 algorithms*
 - Only those constraints which could be affected will be re-examined
 - If for arc \((x, y)\), any value \(v\) of \(x\) is removed
 - Domain of any third variable \(z (z, x)\) needs to be checked
 - Value \(v\) may support some values in \(z\)

*Mackworth (1977)
Arc Consistency – AC-3

PROCEDURE AC-3(Z, D, C)
BEGIN
 Achieve node consistency
 Construct the constraint list Q
 WHILE (Q is not empty) DO
 Delete item \(x \rightarrow y \) from \(Q \);
 IF Revise(\(x \rightarrow y, (Z,D,C) \)) THEN
 Update \(Q \) to include item \(z \rightarrow x \)
 //Include any 3rd variable which is constrained by \(x \)
 Return (\(Z, D, C \))
END

- Foundations of CS, Tsang, 2003
Arc Consistency – AC-4

- AC-4*
 - Needs special data structure to remember individual pairs of variable-values
 - Avoid checking certain variables repeatedly
 - Use the ides of support

*Mohr & Henderson (1986)
Arc Consistency – AC-4

- AC-4
 - If a value \(v \) is removed from the domain of \(x \)
 - Not necessary to examine all binary constraints \(C_{x,y} \)
 - Ignore those values in \(D_y \) which do not reply on \(v \) for support
 - Those values in \(D_y \) rely on other values in \(D_x \) for support rather than \(v \)
Arc Consistency – algorithms

- AC-1 algorithm
 - Any value removed from a variable
 - All constraints in the constraint graph are re-checked
Arc Consistency – algorithms

- AC-3 algorithm
 - Any value removed from a variable
 - Only affected constraints are re-checked
Arc Consistency – algorithms

- AC-4 algorithm
 - Any value v removed from a variable
 - Only those values that are supported of affected variables are re-checked
Arc Consistency – generalise

- Arc consistency is 2-consistency
 - Binary constraint
 - Example
 - Map colouring and 8-queen are arc consistent

- Node consistency is 1-consistency
 - Unary constraints
 - Example
 - $x = \{1, 2, 3\}$, x must be even
Arc Consistency – generalise

- Node consistency algorithm
 - Simply remove inconsistent values from the domain of variables that do not satisfy the unary constraint
Arc Consistency – generalise

- Node consistency algorithm
 - Go through each variable
 - Check if the values satisfy the unary constraint of the variable
 - Delete all values which violate the constraints from the domains

- a: maximum size of domains; n: number of variables
 - $O(an)^*$
Arc Consistency – generalise

- *Big O
 - Notation in complexity theory
 - How the size of input affect the algorithm’s computational resource (time or memory)
 - Complexity of algorithms

- Self study: what is the complexity of AC-1 algorithm?
Arc Consistency – generalise

- Achieving arc and node consistency
 - Does not guarantee to find a solution, or
 - Does not prove there is a solution exist

- Extend the consistency check to more than two variables
 - Path consistency
Arc Consistency – generalise

- Path consistency
 - We can generalise arc consistency to problems concerning 3 variables
 - For values a and b for any two variables x and y
 - There must be value c for variable z, such that
 - Assignment $x = a$, $y = b$, $z = c$ satisfy the constraint C_{xyz}

- Path consistency algorithms
 - remove more inconsistencies
Arc Consistency – generalise

- Achieving path consistency
 - does not guarantee to find a solution, or
 - prove there is a solution exist

\[
\begin{align*}
\{1,2,3\} & \quad \{1,2,3\} \\
\{1,2,3\} & \quad \{1,2,3\} \\
\{1,2,3\} & \quad \{1,2,3\}
\end{align*}
\]

Constraint:
\[\neq\text{ for each edge}\]
k-consistency

- k-consistency
 - If one picks up k variables and assign $(k-1)$ of them any values, the k^{th} node can be assigned a value that is consistent with the previous values, satisfying the constraints between the k^{th} and those $(k-1)$ variables

- k-consistent $\rightarrow (k-1)$-consistent?
k-consistency

- Strongly k-consistency
 - j-consistency for all $j \leq k$

That is

- A CSP is strong k-consistent if it is 1-, 2-, ... up to k-consistent
Consistency and Backtracking

- A solution can be found without backtracking if the constraint graph is strong k-consistent.
 - If a constraint graph is j-consistency $j < k$, backtracking still cannot be avoided.

- However
 - the algorithm of obtaining k-consistency is computational expensive.
Consistency and Backtracking

- A solution can be found without backtracking

1. If the constraint graph is a tree
 - Each node (except root) has at most one parent node
 - Each node may have zero or more child nodes

2. If the constraint graph is both arc-consistent and node-consistent
Consistency and Backtracking

- **Arc consistency vs. k-consistency**
 - Achieving stronger consistency checks
 - takes more time
 - reduces more branches

- **In practice**
 - We can find a smallest k, problem can be solved without backtracking
 - Deciding an appropriate level of consistency is an empirical science
Summary

- Constraint propagation algorithms
 - Arc consistency
 - Definition
 - Example
 - Arc consistency algorithms (AC-1, AC-3, AC-4)
 - k-consistency generalisation
 - Strong k-consistency
 - Consistency vs. backtracking free