
Z Notations

Dr. Rong Qu

rxq@cs.nott.ac.uk

http://www.cs.nott.ac.uk/∼rxq/#g53fsp

G53FSP Formal Specification 1

Introduction

We use mathematical notation so that we will be able to

prove certain properties of the system directly from the

specification. i.e. it is consistent and it is complete

answer questions about the system. i.e. ”Can such and

such a situation ever arise?”

produce computer programs directly from the

specification, or confirm that an existing program

conforms the specification

G53FSP Formal Specification 2

But

There remains always, of course, the problem of proving

that our mathematics actually represents the real-world

problem that we are trying to represent

G53FSP Formal Specification 3

Schema

The specification is broken down into small units called

schema

Each schema will have

declaration part and

a logical or predicate part

G53FSP Formal Specification 4

Identifiers

Identifiers followed by a prime ’ indicate the values of

objects after the action has taken place

Identifiers followed by a question mark ? indicate input

values identifiers

Identifiers followed by a exclamation ! indicate output

values

G53FSP Formal Specification 5

A State Schema

Assume a particular possible state of our system to be

known = {Joy ,Eric}

known as a set of names

G53FSP Formal Specification 6

A State Schema

height = {(Joy , 6feetand3inches),
(Eric, 5feetand2inches)}

a function mapping names to heights

weight = {(Joy , 7stonesand2pounds),
(Eric, 17stonesand10pounds)}

a function mapping names to weights

G53FSP Formal Specification 7

A State Schema

The function height , weight could be equally written

height = {(Joy 7→ 6feetand3inches),
(Eric 7→ 5feetand2inches)}

weight = {(Joy 7→ 7stonesand2pounds),
(Eric 7→ 17stonesand10pounds)}

G53FSP Formal Specification 8

State-space Schema

describes the logic of the overall state of our system

[NAME, HEIGHT, WEIGHT]

Height and Weight
known height : P NAME
known weight : P NAME
height : NAME→+ HEIGHT
weight : NAME→+ WEIGHT

known height = dom height
known weight = dom weight

G53FSP Formal Specification 9

The Declaration Part

The initial line

[NAME ,HEIGHT ,WEIGHT]

declares that NAME ,HEIGHT and WEIGHT are three

basic data types

we will not be defining them further in this specification

G53FSP Formal Specification 10

The Declaration Part

known height : P NAME
known weight : P NAME
height : NAME→+ HEIGHT
weight : NAME→+ WEIGHT

declares that

known height and known weight are to be sets of NAMEs

height and weight are to be partial functions which will act on a

NAMEs to give a HEIGHT or a WEIGHT respectively

G53FSP Formal Specification 11

The Predicate Part

The lower part of the schema

known height = dom height
known weight = dom weight

consists of logical statements which define the system

the set known height is to be exactly equal to the

domain of the height function

the set known weight is to be exactly equal to the

domain of the weight function

G53FSP Formal Specification 12

The Predicate Part

This part of the schema declares logical statements which

are always true, and are invariants of the system

If there are several statements in the predicate part, their

order is immaterial; they all represent conditions which

must be true

Note that known height and known weight are derived

objects

G53FSP Formal Specification 13

Operations and Their Schema

We can declare the action of adding a new height to the

list as the schema

This is known as an operation schema since it describes the

change to the system brought about by a given operation

or event

G53FSP Formal Specification 14

Operations and Their Schema

New Height
∆Height and Weight
name? : NAME
hgt? : HEIGHT

name? /∈ known height
height ′ = height ∪ {name? 7→ hgt?}
weight ′ = weight

G53FSP Formal Specification 15

Included Schema

∆Height and Weight

state that the schema Height and Weight will be used

with both its declarations and predicates.

The symbol ∆ in front of the name indicates that we

wish to use this schema in association with a state

change.

In any state change, a primed identifier indicates the value

after change, the unprimed identifier represents the value

before the change.

G53FSP Formal Specification 16

The ∆ Inclusion

By including the schema using

∆Height and Weight

we are automatically including all the declarations

known height , known height ′ : P NAME
known weight , known weight ′ : P NAME
height , height ′ : NAME→+ HEIGHT
weight ,weight ′ : NAME→+ WEIGHT

G53FSP Formal Specification 17

The ∆ Inclusion

The ∆Height and Weight also causes the predicates
from Height and Weight to be included in the predicate
part

known height = dom height
known weight = dom weight
known height ′ = dom height ′

known weight ′ = dom weight ′

G53FSP Formal Specification 18

New Height

We also declare that there will be an input argument

name? of type NAME , and a second input argument

hgt? of the type HEIGHT .

G53FSP Formal Specification 19

Pre- and Post- Conditions

name? /∈ known height

This predicate is known for obvious reasons as a pre-

condition, defining conditions which must hold when the

operation starts

The second and third predicates are post-conditions

height ′ = height ∪ {name? 7→ hgt?}
weight ′ = weight

G53FSP Formal Specification 20

Pre- and Post- Conditions

We could also describe

known height = dom height
known weight = dom weight

as pre-conditions, and

known height ′ = dom height ′

known weight ′ = dom weight ′

as post-conditions

G53FSP Formal Specification 21

Consistency Checks

After the operation has taken place, we would expect that

known height ′ =
known height ∪ {name?}

G53FSP Formal Specification 22

Observation Schema

An observation schema is one which provides information

about the state of the system, without changing the state

To find a given person’s weight, for example, we use the

schema

G53FSP Formal Specification 23

Observation Schema

Find Weight
ΞHeight and Weight
name? : NAME
wgt ! : WEIGHT

name? ∈ known weight
wgt ! = weight name?

G53FSP Formal Specification 24

Invariant Ξ Inclusion

ΞHeight and Weight

is an extension of the ∆Height and Weight idea

introduced earlier

It introduces the ∆Height and Weight schema and,

since we have an observation schema with no change in

the system data, it provides the additional predicates.

G53FSP Formal Specification 25

Invariant Ξ Inclusion

known height ′ = known height
known weight ′ = known weight
height ′ = height
weight ′ = weight

The exclamation mark in wgt ! indicates that this is an

output object.

G53FSP Formal Specification 26

A Query Schema

It is possible to construct a schema which will have as

inputs as specific height and weight and will have as

output the set of people who have both that height and

that weight

G53FSP Formal Specification 27

A Query Schema

Who is that high and that tall
ΞHeight and Weight
hgt? : HEIGHT
wgt? : WEIGHT
names! : P NAME

names! = {n : known height | height n = hgt?}
∩{n : known weight | weight n = wgt?}

G53FSP Formal Specification 28

Error Messages and the Like

We need a free type de�nition as follows

REPORT ::= ok | height already anown |
height not known | weight already known |
weight not know

We need one extra schema to define a successful result

Success
report ! : REPORT

report ! = ok

G53FSP Formal Specification 29

Error Messages and the Like

New Height ∧ Success

gives a schema which adds

report ! : REPORT

to the New Height predicate part.

report ! = ok

to the New Height declaration part.

G53FSP Formal Specification 30

Height Already Known Schema

Height Already Known
ΞHeight and Weight
name? : NAME
report ! : REPORT

name? ∈ known height
report ! = height already known

G53FSP Formal Specification 31

Height Already Known Schema

Now combine the schema

(New Height ∧ Sccuess) ∨ Height Already Known

A full definition is

Full New Height =̂
(New Height ∧ Sccuess) ∨
Height Already Known

G53FSP Formal Specification 32

The Full Equivalent

Full New Height
known height, known height ′ : P NAME
known weight, known weight ′ : P NAME
height, height ′ : NAME→+ HEIGHT
weight,weight ′ : NAME→+ WEIGHT
name? : NAME
hgt? : HEIGHT
report! : REPORT

(name? /∈ known height ∧ height ′ = height ∪ {name? 7→ hgt?} ∧ weight ′ = weight ∧
known height = dom height ∧ known weight = dom weight ∧

known height ′ = dom height ′ ∧
know weight ′ = dom weight ′ ∧ report! = ok)

∨ (name? ∈ known height ∧ height ′ = height ∧ weight ′ = weight ∧
known height = dom height ∧ known weight = dom weight ∧

known height ′ = dom height ′ ∧ know weight ′ = dom weight ′ ∧
report! = heigh already known)

G53FSP Formal Specification 33

Weight Not Known Schema

Weight Not Known
ΞHeight and Weight
name? : NAME
report ! : REPORT

name? /∈ known weight
report ! = weight not known

G53FSP Formal Specification 34

Full Find Weight Schema

For a full version of the Find Weight schema, we can
define

Full Find Weight =̂
(Find Weight ∧ Success) ∨Weight Not Known

G53FSP Formal Specification 35

Pre- and Post- Conditions

The transaction operation will update the value of the

global variable till state upon input of one integer

parameter transaction.

If transaction is greater than or equal to 1000, then

till state is to be set to 2; otherwise till state will be

set to the value 1.

The value of transaction will be greater than zero on

entry, and will not be changed by the procedure. The

value of till state on entry will be 1 or 2.

G53FSP Formal Specification 36

Pre- and Post- Conditions

Pre-condition

transaction ≥ 0 ∧ (till state = 1 ∨ till state = 2)

Post-condition

(transaction ≥ 1000⇒ till state ′ = 2)
∧ (transaction < 1000⇒ till state ′ = 1)
∧ transaction ′ = transaction)

G53FSP Formal Specification 37

Notational Difference

∀ x (is an integer(x)⇒ Pred(x))

The statement ”For all values of x in the set S the logical
expression P(x) ∧ Q(x) holds” is written

∀ x : S • P(x) ∧ Q(x)

G53FSP Formal Specification 38

Notational Difference

For sets consisting of all the integers in a given numeric

range, we write the set of integers from 1 to 100 inclusive

as ”1..100”.

For the set of natural numbers including zero (0, 1, 2,

...) we write N

For the natrual numbers starting at 1 we write N1

For all integers (nagitive, zero and positive) Z

G53FSP Formal Specification 39

Notational Difference

We also have multiple variables ranging over the same
set

∀ i , j , k : S1 • ...

∀ i , j , k : S1; x , y , z : S2 • ...

G53FSP Formal Specification 40

Unique Exist Quantifiers

Unique exists

∃!x : S• < logical expr >

There exists exactly one x in S such that ...

∀n : N • ∃!m : N •m = succ(n)

Every natual number has a unique number which follows

it.

G53FSP Formal Specification 41

Counting Quantifier in Z

How many exist. This is written

Ω x : S• < logical expr >

∃ x : S • P(x)⇔ (Ωx : S • P(x)) > 0

∃!x : S • P(x)⇔ (Ωx : S • P(x)) = 1

Ω account : all accounts • balance account < 0

G53FSP Formal Specification 42

Summation Quantifier

Summation∑
x : S• < numeric expr >

∑
account : all accounts • balance account

G53FSP Formal Specification 43

Note 1

You should be careful using the above that you use logical

and numerical expressions.

∀, ∃ and Ω are followed by a logical expression∑
uses a numeric expression

and results

∀ and ∃ deliver logical results

Ω and
∑

deliver numeric results

in their correct places

G53FSP Formal Specification 44

Note 2

Conventions for the empty set (written {}) are that

∀ x : {} • P(x) is true

∃ x : {} • P(x) is false

∃!x : {} • P(x) is false

Ωx : {} • P(x) is zero∑
x : {} •N (x) is zero

G53FSP Formal Specification 45

Summary

Schema Introduction

State Schema (Declaration & predicate parts)

Operation Schema (inclusion ∆)

Observation (invariant inclusion Ξ)

Others

Error message, Pre- and post- condition, Notational Differences

G53FSP Formal Specification 46

