G53CLP
Constraint Logic Programming

Dr Rong Qu
Search Orders in CSP
Variable and Value Ordering

- The order of the variables labelled and the values assigned has significant effect on the effectiveness of backtrack

Aims
- Minimise the depth of branches explored
- Minimise the number of branches explored
- Minimise the size of search tree explored
Variable Ordering

Order variables before the search

- Heuristics
 - choose the variable with smallest domain size
 - choose the most constrained variables
 - choose the variable with smallest domain
Variable Ordering

- Order variables before the search

 - Minimal width ordering
 - Reduce the backtracking

 - Minimal bandwidth ordering
 - Reduce the number of re-assignment when backtracking

 - Max-cardinality ordering
 - Approximation of minimal bandwidth ordering
Minimal Width Ordering

- Label the variables that are constrained by fewer others to the last
 - Based on constraint graph
 - Reduce the need of backtracking

- Find a total ordering for the variables
 - With the minimal width
- Label the variables by the ordering
Minimal Width Ordering

- Label the variables that are constrained by fewer others to the last

- Use topology in graph theory
 - Total ordering of a minimal width

- Let’s look at
 - Total ordering
 - Minimal width
Minimal Width Ordering

Total ordering

- Every two elements in a set S are ordered
- $<$

- for all a, b and c in set S
 - if $a \leq b$ and $b \leq a$ then $a = b$ (antisymmetry)
 - if $a \leq b$ and $b \leq c$ then $a \leq c$ (transitivity)
 - $a \leq b$ or $b \leq a$ (totality)
Minimal Width Ordering

- **Minimal width**
 - Given a total ordering $<$ on the nodes of a graph
 - **Width of a node** ν
 - the number of nodes before and adjacent to ν
 - **Width of an ordering**
 - the maximum width of all nodes
 - **Width of the graph**
 - the minimal width of all possible orderings
Minimal Width Ordering

- Constraint graph of map coloring
- An ordering of the nodes in the graph
 - \(A B D C E F \)

Width of ordering: 3
Minimal Width Ordering

Another ordering of the nodes in the graph

\[C B D A E F \]

Width of ordering: 3
Minimal Width Ordering

Ordering: A, B, D, C, E, F
Minimal Width Ordering

Ordering: C, B, D, A, E, F
Minimal Width Ordering

- The smaller the width of an ordering of variables, the more chance of backtracking reduced.

- Variables at the front of ordering are in general more constrained. Labelling them earlier leaves less trouble at later stage.
Minimal Width Ordering

- Finding the minimal width of a graph*

 REPEAT
 - Pick the node n with the least degree
 - Put n at the beginning of the ordering
 - Remove n and all adjacent edges to n
 UNTILL all nodes are in the ordering

- Complexity of this algorithm
 - $O(n^2)$

 * From Freuder (1982)
Minimal Width Ordering vs. k-Consistency

- Finding the minimal width of a graph
 - Complexity of this algorithm $O(n^2)$
 - Not too expensive to find the minimal width of a graph in practice

- What benefit can this offer?

- The complexity of finding strong k-consistency
 - Exponential

- Help reducing the k-consistency calculations
 - Backtrack free search!
Minimal Width Ordering vs. k-Consistency

Theorem

- A depth first search is backtrack-free if the level of strong k-consistency is greater than the width of the ordered constraint graph

- Freuder, 1982

Minimal Width Ordering vs. k-Consistency

- **k-consistency**
 - For values of (k-1) variables
 - At least one value in the k^{th} variable
 - Consistent with the k-1 assignment

- k-consistency doesn’t mean k-1 consistency

- **Strong k-consistency**
 - All j < k-1, j-consistency
 - Computation time: exponential
Minimal Width Ordering vs. k-Consistency

- This indicates that if a constraint graph has a width w
 - Then we never need to achieve strong k-consistency for $k > w + 1$
 - The smaller $(w - k)$ is, the less backtracking is needed
Minimal Bandwidth Ordering

- Based on constraint graph
- Pre-process: ordering of variables
- The closer the constrained variables in the ordering, the less distance one has to backtrack
Minimal Bandwidth Ordering

- Find a total ordering for the variables
 - With the minimal bandwidth
- Label the variables by the ordering

- Let’s look at
 - Bandwidth
Minimal Bandwidth Ordering

- **Minimal bandwidth**
 - Given a total ordering \(<\) on the nodes of a graph
 - Bandwidth of a node \(v\)
 - the maximum distance between any other adjacent node and \(v\)
 - Bandwidth of an ordering
 - the maximum bandwidth of all nodes
 - Bandwidth of the graph
 - the minimal bandwidth of all possible orderings
Minimal Bandwidth Ordering

- Constraint graph of map coloring

- An ordering of the nodes in the graph

A B D C E F

bandwidth of ordering: 3
Minimal Bandwidth Ordering

bandwidth of ordering: 5
Minimal Bandwidth Ordering

Ordering: A, B, D, C, E, F

Ordering: C, B, D, A, E, F

Observe the distance the search has to backtrack
Minimal Bandwidth Ordering

- Finding minimal bandwidth ordering is time inefficient
 - $O(n^k)$; k: bandwidth

- Max-cardinality ordering can be seen as an approximation of minimal bandwidth ordering

Gurari & Sudbough (1984)
Max-cardinality Ordering

- Finding the max-cardinality ordering

 - Randomly pick one node

 REPEAT

 - Choose a node n in the remaining nodes

 - with the maximum number of adjacent edges to those already picked

 - Put n at the beginning of the ordering

 UNTILL all nodes are in the ordering
Max-cardinality Ordering

- Finding the max-cardinality ordering

![Graph Diagram]

Bandwidth of ordering: 5

G53CLP – Constraint Logic Programming
Finding the minimal width of a graph

REPEAT

- Pick the node \(n \) with the least degree
- Put \(n \) at the beginning of the ordering
- Remove \(n \) and all adjacent edges to \(n \)

UNTIL all nodes are in the ordering

\(C D B E F A \)

\(C B D A E F \)
Summary

- CP Techniques
 - Variable ordering
 - Heuristics
 - Minimum width ordering
 - Minimum bandwidth ordering
 - Max-cardinality Ordering
 - Value ordering
 - Heuristics