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Abstract—Current widely used decomposition methods in 

MOEA/D (multi-objective evolutionary algorithms based on 

decomposition) showed to be lack of diversity or sensitive to the 

shape of the Pareto Front during the search. This research 

investigates the recently proposed grid-based decomposition 

methods, which reflect the inherent characteristics of the 

neighborhood structure in the solution to address the issues of 

diversity and sensitiveness. The performance of the grid-based 

decomposition method, however, depends on the size of its grid 

segmentation, and its time complexity increases with the number 

of grids. In order to improve the computational efficiency, we 

propose a new concept of Pareto Front grid to guide the search in 

MOEA/D. Based on the idea of knee point, a novel grid-based knee 

point selection method is proposed. In addition, a new nadir point 

selection strategy is also proposed based on statistical analysis 

estimating population with samples. Finally, a decomposition-

based multi-objective evolutionary algorithm with Pareto Front 

Grid (PFG-MOEA) is proposed. Extensive experimental analysis 

demonstrates the effectiveness of the proposed PFG-MOEA 

against state-of-the-art multi-objective evolution algorithms. As 

the extension of the CDG-MOEA algorithm in the literature, PFG-

MOEA is effective by consuming much less computing time. 

 
Index Terms—Evolutionary Multi-objective Optimization, 

Pareto Front, MOEA/D. 

 

I. INTRODUCTION 

any real world optimization problems involve multiple 

conflicting objectives, such as in the airship deployment 

system [1] and resource scheduling [2], etc. This type of 

optimization problem is called multi-objective optimization 

problem (MOP) [3-4], its mathematical expression can be 

defined as shown in (1):  

 
minimize 𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑚(𝑥))

 subject to 𝑥 ∈ 𝑋
 (1) 

where X is the decision space, 𝑥 = (𝑥1, . . . , 𝑥𝐷) represents the 

decision vector, D is the dimension of the decision variable, 

𝑓𝑖(𝑥) represents the optimization objective function for the i-th 

objective, 𝑖 ∈ {1, . . . , 𝑚}, and m is the number of objectives. 

Due to the conflicting objectives, there is usually no single 
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solution that optimizes all objectives at the same time. Instead 

a set of non-dominated solutions can be obtained as a trade-off 

between different objectives. For a minimization problem, 

assuming 𝑥𝐴 and 𝑥𝐵 are two solutions of MOP given in (1), 𝑥𝐴 

dominates 𝑥𝐵 (expressed as 𝑥𝐴 ≺ 𝑥𝐵  ), if and only if 𝑓𝑖(𝑥𝐴) ≤
𝑓𝑖(𝑥𝐵)  for 𝑖 ∈ {1, . . . , 𝑚} , and there is at least one objective 

which satisfies 𝑓𝑗(𝑥𝐴) < 𝑓𝑗(𝑥𝐵), for  𝑗 ∈ {1, . . . , 𝑚}. The set of 

all non-dominated Pareto optimal solutions is called the Pareto 

optimal Set (PS), and the projection of PS in the objective space 

is called Pareto optimal Front (PF) [5-6]. 

In order to obtain an approximation of the Pareto optimal Set, 

evolutionary algorithms (EAs) have been widely used to solve 

various multi-objective optimization problems. A lot of multi-

objective evolutionary algorithms (MOEAs) have been 

proposed, for example the Pareto dominance-based MOEAs [7-

9], the decomposition-based MOEAs [10-12] and the indicator-

based MOEAs [13-14]. 

Zhang et al. [10]  proposed a decomposition-based multi-

objective optimization algorithm (MOEA/D), which is one of 

the most popular MOEA frameworks in recent years. MOEA/D 

decomposes MOP into a series of single-objective sub-

problems, and uses the evolutionary algorithm to optimize these 

sub-problems simultaneously. Commonly used decomposition 

methods in MOEA/D include the Weighted Sum approach 

(WS) [5], the Tchebycheff decomposition approach (TCH) [5] 

and the Penalty-based Boundary Intersection approach (PBI) 

[10]. However, these three common decomposition methods are 

very sensitive to the shape of Pareto Front for a MOP with 

irregular distributed Pareto Front. Another issue of these well-

known decomposition methods is that one solution may be 

associated with several different sub-problems, leading to the 

loss of diversity of the Pareto non-dominated solution set. 

Numerous works have been carried out to overcome these 

problems in MOEA/D. For example, Zhang et al. [15] proposed 

a new decomposition method combining a boundary crossover 

with the Tchebycheff method, which has achieved good 

performances for solving MOPs, especially those with two 

objectives. However, when the number of objectives increases, 

the solution qualities of the decomposition-based MOEA 

become not satisfactory. Sato et al. [16] proposed an inverse 

PBI decomposition method to effectively solve MOP with 
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convex Pareto front. Asafudoula et al. [17] used an adaptive 

contrast method to balance the convergence and diversity of the 

population. In the algorithm proposed by Gee et al. [19], an on-

line geometric measurement method is proposed to improve the 

diversity of MOEA/D. Wang et al. [20] used an angle parameter 

to limit the update range of each sub-problem in MOEA/D, so 

that the diversity of the algorithm is optimized due to the 

enhanced replacement of the sub-problem. However, in 

different stages of the search process, the setting of the angle 

parameter is a challenging task.  

Since the decomposition-based algorithm is sensitive to the 

reference vector, Ge et al. [21] proposed a potential active 

reference point re-allocation mechanism based on a SVM 

classifier to reduce the number of useless reference vectors. 

Wang et al. [35] proposed an integrated algorithm framework 

Two-Arch2 with two archives (a convergence archive and a 

diversity archive) with different selection criteria. Combining 

the advantages of indicators and Pareto-based criteria, a 

diversity preservation mechanism was designed to solve the 

MOP. The 1by1EA algorithm in [36] uses an effective 

convergence index to select individuals one by one in order to 

increase the selection pressure towards the front of the Pareto 

optimal solution. When an individual is selected, its neighbors 

ensure diversity through a niche method. Other proposed 

algorithms include hpaEA [37] which uses reference vectors to 

improve the population diversity and DEA-GNG [38] which 

addresses the irregular PF issue by using a growth neural 

network. 

 In addition to improving the traditional decomposition 

method of MOEA/D, some new decomposition methods have 

also been proposed recently. Cai et al. [22] proposed a 

Constrained Decomposition approach with Grids (CDG). With 

the inherent characteristics of the grid reflecting neighborhood 

structure information of the solution, CDG can obtain 

satisfactory results when dealing with particularly convex or 

concave problems, or when there is a large gap between 

different objective numerical ranges. It means CDG is robust to 

the Pareto front of the optimization problem. However, the 

effect of CDG depends on the size of grid segmentation. In their 

work, the number of grid segmentation is set to 180, which 

means 180×180=32400 grids have been generated in the two-

dimensional decision space, requiring a large storage space and 

consuming a long computing time. The time and space 

complexity of the algorithm are thus very high. 

In order to improve the search efficiency, we propose a 

multi-objective evolutionary algorithm with Pareto Front Grid 

based on decomposition (PFG-MOEA), where Pareto Front 

Grid (PFG) is a new concept defined in this paper. It has been 

proven in many works [24,35] that the offspring of the more 

advanced individuals in the population will perform better than 

the offspring of other individuals. In order to improve the 

evolutionary pressure of the algorithm, only leading individuals 

in the Pareto Front Grid are stored during the evolution to guide 

the search. The main contributions of this paper include: 

 1) The idea of Pareto Front Grid (PFG) is defined, where 

only the individuals in PFG stored during the evolution process 

are used to guide the search. 

 2) A new nadir point selection method is proposed based on 

the statistical analysis estimating the population with samples.  

3) In order to improve the convergence of the proposed PFG-

MOEA algorithm, a grid-based knee point selection method is 

proposed based on the idea of knee point. The proposed 

 
Fig. 2.  The diagram of CDG in [22]. 
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Fig. 1.  Four typical decomposition methods in MOEA/D. 
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evolutionary algorithm with Pareto Front Grid based on 

decomposition showed a good performance on the GLT and UF 

test functions  

The rest of this paper is organized as follows. Section 2 

introduces related works; the third section describes the 

framework of our proposed PFG-MOEA; Section 4 tests the 

performance of the algorithm through a large number of 

experiments; finally, the fifth section summarizes the work. 

II. RELATED WORK  

In decomposition-based evolutionary algorithms, MOP is 

generally transformed into a set of single-objective sub-

problems through a set of weight vectors and aggregate 

functions, and then these single-objective sub-problems are 

optimized separately. In MOEA/D [10], the MOP problem is 

decomposed into multiple sub-problems and then these sub-

problems are optimized simultaneously. Let 𝜆𝑖 = (𝜆1, … , 𝜆𝑚)𝑇  

be the reference vector of the i-th sub-problem, where 𝜆𝑗 ≥ 0 

(𝑗 = 1, … , 𝑚), and ∑ 𝜆𝑗 = 1𝑚
𝑗=1 . Fig. 1 shows four commonly 

used decomposition methods in MOEA/D, including the 

weighted sum approach (WS, see Fig.1(a)), the Tchebycheff 

decomposition approach (TCH, see Fig.1(b)), the ordinary 

Boundary Intersection approach (BI, see Fig.1(c)), and the 

Penalty-based Boundary Intersection approach (PBI, see 

Fig.1(d)). 

Taking the MOP problem with minimization objectives for 

example, for the weighted sum approach (WS), the i-th sub-

problem is defined as follows in (2): 

 
minimize 𝑔(𝑥|𝜆𝑖) = ∑ 𝜆𝑗

𝑖𝑓
𝑗
(𝑥)𝑚

𝑗=1

 subject to 𝑥 ∈ 𝑋
 (2) 

For the Tchebycheff decomposition approach (TCH), the i-

th sub-problem is defined as shown in (3): 

 
minimize 𝑔𝑡𝑒(𝑥|𝜆𝑖, 𝑧∗) = max

1≤𝑗≤𝑚
{|𝑓

𝑗
(𝑥) − 𝑧∗| 𝜆𝑗

𝑖⁄ }

 subject to 𝑥 ∈ 𝑋
 (3) 

where 𝑧∗ = (𝑧1
∗, … , 𝑧𝑚

∗ )𝑇  is a m-dimensional reference point 

vector, which is composed of the optimal value for each 

objective function, i.e. 𝑧𝑗
∗ = 𝑚𝑖𝑛{𝑓𝑗(𝑥)|𝑥 ∈ 𝑋} , for 𝑗 =

1, … , 𝑚. 

The penalty-based boundary intersection approach (PBI) is a 

variant of the ordinary boundary intersection method (BI). The 

i-th sub-problem of the BI method can be defined as in (4):  

 

minimize 𝑔𝑏𝑖(𝑥|𝜆𝑖 , 𝑧∗) = 𝑑

subject to 𝐹(𝑥) − 𝑧∗ = 𝑑𝜆𝑖

𝑥 ∈ 𝑋

 (4) 

Where d is the distance of a solution 𝑥 to the idea point 𝑧∗ 

along the reference vector 𝜆𝑖 as shown in Fig.1(c).  

Thus, the i-th sub-problem of the PBI approach is given as 

follows in (5): 

 

minimize 𝑔𝑝𝑏𝑖(𝑥|𝜆𝑖 , 𝑧∗) = 𝑑1
𝑖 + 𝛽𝑑2

𝑖

𝑑1
𝑖 = (𝐹(𝑥) − 𝑧∗)𝑇𝜆𝑖 ‖𝜆𝑖‖⁄

𝑑2
𝑖 = ‖𝐹(𝑥) − (𝑧∗ − 𝑑1

𝑖 𝜆𝑖)‖

subject to 𝑥 ∈ 𝑋                                        

 (5)  

where ‖∙‖ is the 𝐿2-norm, 𝛽 is the penalty parameter, 𝑑1
𝑖  is the 

distance from the solution to the idea point along the reference 

vector and 𝑑2
𝑖  represents the vertical distance to the reference 

vector. 

These traditional decomposition methods based on the 

reference vector are very sensitive to the shape of Pareto Front. 

When dealing with the MOP with uneven or irregular Pareto 

Front, traditional algorithms are often lack of diversity in the 

search. In addition, according to our observation, a solution 

generated by these traditional decomposition methods may be 

associated with different sub-problems, which aggravates the 

diversity in solution sets. 

In the recently proposed CDG algorithm [22], for each 

objective function 𝑓𝑙(𝑥) , 𝑙 ∈ {1, . . . , 𝑚} , suppose that the 

distance between the ideal point 𝑧𝑙
∗ and the nadir point 𝑧𝑙

𝑛𝑎𝑑 is 

divided into 𝐺𝐾  intervals, where the parameter 𝐺𝐾  is the 

number of grid segmentations. Then the length of an interval 

for the 𝑙 -th objective is 𝑑𝑙 = (𝑧𝑙
𝑛𝑎𝑑 − 𝑧𝑙

∗ + 2𝜎) 𝐺𝐾⁄ , where 

𝜎 > 0  is a very small random number. 𝐺𝑟𝑖𝑑𝑙(𝑥) =
⌈(𝑓𝑙(𝑥) − 𝑧𝑙

∗ + 2𝜎) 𝑑𝑙⁄ ⌉ represents the location of the solution 

x within the intervals for the 𝑙 -th objective. As shown in 

Fig.2(a), solution x is located in the third grid for the objective 

function 𝑓1(𝑥), i.e. 𝐺𝑟𝑖𝑑1(𝑥)=3; and the third grid of the second 

objective 𝑓2(𝑥), i.e. 𝐺𝑟𝑖𝑑2(𝑥)=4. 

In CDG, the k-th sub-problem on the l-th objective is defined 

as follows in (6):  

 

minimize 𝑓𝑙(𝑥)

subject to 𝐺𝑟𝑖𝑑𝑗(𝑥) = 𝑔𝑘𝑗, 𝑗 ≠ 𝑙

𝑔𝑘𝑗 ∈ {1, … , 𝐺𝐾}

𝑥 ∈ 𝑋

 (6) 

where 𝐺𝐾 is the number of grids for each objective. So for a 

multi-objective optimization problem with m objectives, it can 

be decomposed into 𝑚 × 𝐺𝐾𝑚−1  sub-problems. The solution 

set for the k-th sub-problem of the l-th objective 𝑆𝑙(𝑘) can be 

defined as in shown (7): 

 
𝑆𝑙(𝑘) = {𝑥|𝐺𝑟𝑖𝑑1(𝑥) = 𝑔𝑘

1
, … , 𝐺𝑟𝑖𝑑𝑙−1(𝑥) = 𝑔𝑘

𝑙−1
,

𝐺𝑟𝑖𝑑𝑙+1(𝑥) = 𝑔𝑘
𝑙+1

, … , 𝐺𝑟𝑖𝑑𝑚(𝑥) = 𝑔𝑘
𝑚

}
 (7) 

Note that solution x may belong to solutions of different sub-

problems for different objectives, and thus can be included in 

different solution sets. As shown in Fig. 2(b), x is a solution for 

sub-problem 𝑘1  for objective function 𝑓1(𝑥)  and is also a 

solution for sub-problem 𝑘2  for objective function 𝑓2(𝑥). So 

solution sets 𝑆1(𝑘1) and 𝑆2(𝑘2) both contain solution x.  
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III. THE PROPOSED PFG-MOEA 

The main framework of our proposed PFG-MOEA, see 

Algorithm 1, consists of the following four components: 

1. Initialization: randomly generate 𝑁 individuals to form the 

initial population 𝑃𝑜𝑝 (line 1);  

2. Generation of PFG: obtain the ideal point 𝑧∗ and the nadir 

point 𝑧𝑛𝑎𝑑 , generate the Pareto Front Grid (PFG) (see 

Section 3.2) and all solutions in PFG {𝑃𝐹𝐺𝑗
𝑖} (lines 4-5);  

3. Evolution Procedure: for individuals in each 𝑃𝐹𝐺𝑗
𝑖 , the 

mating pool MP is defined as shown in (8): 

 𝑀𝑃 = {
𝑃𝐹𝐺𝑗

𝑖 ∪ 𝑃𝐹𝐺𝑗
𝑖+1 𝑖𝑓  𝑟𝑎𝑛𝑑 < 𝜀

𝑃𝑜𝑝 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (8) 

where 𝑃𝐹𝐺𝑗
𝑖+1  is a randomly selected Pareto Front Grid 

adjacent to 𝑃𝐹𝐺𝑗
𝑖 , ε is the selection probability. For each 

solution x in 𝑃𝐹𝐺𝑗
𝑖 , two solutions 𝑥𝐴  and 𝑥𝐵  are randomly 

selected in the mating pool MP, and a new individual v 

formed offspring Q (lines 8-17) is generated by using the DE 

operator [12]. 

The DE operator works as follows. For parent solutions x, 

𝑥𝐴, 𝑥𝐵, their child v is generated as in (9): 

 𝑣𝑖 = {
𝑥𝑖 + 𝐹 × (𝑥𝐴

𝑖 − 𝑥𝐵
𝑖 ) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐶𝑅

𝑥𝑖 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝐶𝑅
 (9) 

Here 𝑣𝑖represents the i-th decision variable of the offspring 

individual v. F is the scaling factor and CR is the cross 

probability. Given a given random number is less than CR, a 

new decision variable for the child is generated based on 

differential evolutionary, otherwise the decision variable 

remains unchanged. 

4. Environmental Selection: N individuals will be selected as 

the next generation from the joint population Pop ∪ Q (line 

20). 

In the early stage of evolution, the obtained Pareto Front 

Grid and the solution in the grid will not be too scattered, which 

provides a better evolutionary pressure for the evolution of 

future generations. The above procedure repeats until the 

termination condition is met. The pseudo code of the main 

framework of PFG-MOEA is given in Algorithm 1. 

A. The Statistic Estimation based Nadir Point Selection 

In order to obtain the Pareto Front Grid, we need to locate 

the ideal point 𝑧∗  and the nadir point 𝑧𝑛𝑎𝑑  in the current 

population. The value for each objective of the ideal point 𝑧∗ 

is the optimal value for each objective of all solutions in the 

current population. For the nadir point 𝑧𝑛𝑎𝑑 , a commonly used 

method is to take the worst value of each objective of all the 

solutions in the current population. However, we observed that 

if the value of the nadir point 𝑧𝑛𝑎𝑑 is set to a very large value, 

it can easily produce a large number of dominated solutions 

which may lead to a slow convergence. 

 

Algorithm 1  The Framework of PFG-MOEA 

Input:  1) Genmax: the maximum number of generations;  2) N: the 

population size;  3) GK: the number of the grids in each objective. 

OutPut:  a solution set Pop. 

 1:  Pop = Initialization(N) 

 2:  while Gen < Genmax do 

 3:    set Q as an empty set 

 4:    𝑧∗ = min
𝑥∈𝑃

𝑓 (𝑥), 𝑧𝑛𝑎𝑑
 = UpdateZ (P) 

 5:  (𝑃𝐹𝐺1
1, … , 𝑃𝐹𝐺𝑚

𝐺𝐾) = Pareto_Grid(Pop, GK, z*, znad);    // PFG: Pareto 

Front Grid 

 6:    for j=1 to m do 

 7:      for i=1 to GK do 

 8:        for each individual x in |𝑃𝐹𝐺𝑗
𝑖| do 

 9:          generate a random number r in (0,1); 

 10:          if  r < δ  then 

 11:         select 𝑥𝐴 and 𝑥𝐵 from 𝑃𝐹𝐺𝑗
𝑖 ∪ 𝑃𝐹𝐺𝑗

𝑖+1 randomly; 

 12:         else 

 13:           select 𝑥𝐴 and 𝑥𝐵 from Pop randomly; 

 14:         end if 

 15:         generate an offspring v from x, 𝑥𝐴 and 𝑥𝐵 by the DE operator; 

 16:         Q = Q ∪ v; 

 17:       end for 

 18:     end for 

 19:   end for 

 20:   Pop = Environmental_Selection(Pop ∪ Q, N); 

 21:   Gen= Gen+ 1; 

 22: end while 
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In this paper, a new statistic estimation strategy for 

estimating the nadir point 𝑧𝑛𝑎𝑑  is thus proposed by using a 

number of sample individuals to estimate the population 

distribution. The applicability of the statistic estimation strategy 

was tested on the test problem GLT1 [27] with two objectives. 

After a number of preliminary experiments, we found that 1/3 

of the randomly selected individuals in the initial population 

can statistically estimate the distribution of the whole 

population.  As shown in Fig. 3, for the initial population Pop, 

1/3 of the individuals have been randomly selected to construct 

the sub-population SP. The mean value of 𝑓1(𝑥) in the initial 

population Pop is 4.0171 with a standard deviation of 2.9116; 

and the mean value of 𝑓2(𝑥)  is 11.6525 with a standard 

deviation of 9.1517. For the sub-population SP, the mean value 

of 𝑓1(𝑥) is 4.0574, the standard deviation is 3.0056; the mean 

on 𝑓2(𝑥) is 11.2871, and the standard deviation is 9.1985. We 

then performed the one-way statistical analysis of the variance 

on results 

for both objectives. For  𝑓1(𝑥), the corresponding P value is 

0.91>0.05, which is greater than the significance level, so there 

is no significant difference between the population Pop and the 

sub-population SP at the 0.05 level. For 𝑓2(𝑥) , the 

corresponding P value is 0.73>0.05, which is greater than the 

significance level, so there is no significant difference between 

Pop and SP at the 0.05 level. This statistic analysis justifies that 

the sub-population SP of1/3 of the individuals can be used to 

statistically estimate the initial population Pop. This statistic 

estimation strategy is thus used in our proposed PFG-MOEA, 

where 1/3 individuals are selected from the whole population to 

estimate the actual nadir point 𝑧𝑛𝑎𝑑of the current population 

and reduce the computing time.  

The pseudo code of the proposed nadir point selection is 

shown in Algorithm 2. Firstly, one third of the individuals is 

randomly selected from the current population Pop to form a 

sub-population SP (line 1). Then the sub-population SP is 

sorted by the non-dominated sorting. The first layer of non-

dominated solutions is selected to reconstruct the NDS-SP (line 

2). The maximum value of each objective of individuals in the 

NDS-SP is set as the value of the nadir point 𝑧𝑛𝑎𝑑  for each 

objective. 

Algorithm 2  The proposed selection of the nadir point 𝑧𝑛𝑎𝑑 

Input:  Pop 

OutPut:  𝑧𝑛𝑎𝑑. 

 1:  randomly select |Pop| / 3 solutions from Pop, SP is the sub-population 

of these selected solutions; 

 2:  NDS-SP = Non-Dominated-Sort(SP) 
// Function: Non-Dominated-Sort(SP) is defined to sort the //SP using  the 

non-dominated sort in //NSGA-II [7] 

 3:  for i = 1 to m do 

 4:     𝑧
𝑛𝑎𝑑 = max

𝑥∈𝑁𝐷𝑆−𝑆𝑃 
𝑓𝑖  (𝑥) 

 5:  end for 

 

  
Fig. 3.  Initial population Pop and subpopulation SP of GLT1 

 

 

 
Fig. 4.  The definition of the Pareto Front Grid 
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B. The Definition of the Pareto Front Grid 

We define the Pareto Front Grid as the grid which contains 

the optimal solution for each objective function in the solution 

set of each sub-problem within the current population. As 

shown in Fig. 4, the solution set 𝑆1(4) of the 4th sub-problem 

for the 1st objective is shown in the shadow section of Fig. 4(a), 

and the solutions of population Pop are shown in Fig. 4 (b). We 

can see that the shadow grid contains the optimal solution of 

solution set  𝑆1(4)  for objective function  𝑓1(𝑥) , which is 

defined as the Pareto Front Grid 𝑃𝐹𝐺1
4 corresponding to the 4th 

sub-problem of the 1st objective function  𝑓1(𝑥). 

After locating the ideal point 𝑧∗  and the nadir point 𝑧𝑛𝑎𝑑 , 

each objective is divided into 𝐺𝐾  equal intervals, and the 

interval length 𝑑𝑗 for the 𝑗-th objective is shown in (10): 

 𝑑𝑗 = (𝑧𝑗
𝑛𝑎𝑑 − 𝑧𝑗

∗ + 2𝜎) 𝐺𝐾⁄  (10) 

For each solution 𝑥 in population Pop, the grid coordinate 

𝐺𝑟𝑖𝑑𝑗(𝑥) to the 𝑗-th objective is calculated as shown in (11):       

 

 𝐺𝑟𝑖𝑑𝑗(𝑥) = ⌈(𝑓𝑗(𝑥) − 𝑧𝑗
∗ + 𝜎) 𝑑𝑗⁄ ⌉ (11) 

where ⌈∙ ⌉ is an upward rounding function. For m objectives, 

the grid coordinate 𝐺𝑟𝑖𝑑(𝑥) of solution 𝑥 is defined as shown 

in (12): 

 𝐺𝑟𝑖𝑑(𝑥) = (𝐺𝑟𝑖𝑑1(𝑥), … , 𝐺𝑟𝑖𝑑𝑚(𝑥)) (12) 

For each objective function 𝑓𝑗(𝑥) , for 𝑗 = 1, … , 𝑚 , 𝑔𝑚𝑖𝑛  

represents the minimum value of the grid coordinate 𝐺𝑟𝑖𝑑𝑗(𝑥) 

among all solutions in  𝑆𝑗(𝑖) for the i-th sub-problem. Solutions 

with the grid coordinate 𝐺𝑟𝑖𝑑𝑗(𝑥) =  𝑔𝑚𝑖𝑛  in 𝑆𝑗(𝑖)  will be 

selected to form 𝑃𝐹𝐺𝑗
𝑖 . So we can obtain all Pareto Front Grid 

{𝑃𝐹𝐺𝑗
𝑖 }, i represents the i-th sub-problem, as shown in the 

shadow part of Fig. 4(c). Note that the PFG of the sub-problem 

on different objectives may be repetitive, such as 𝑃𝐹𝐺1
3  and 

𝑃𝐹𝐺2
1 (red bar shadow grids in Fig. 4(c)), 𝑃𝐹𝐺1

2 and 𝑃𝐹𝐺2
2 (red 

square shadow grids in Fig. 4(c)), 𝑃𝐹𝐺1
1 and 𝑃𝐹𝐺2

3 (red vertical 

shadow grids in Fig. 4(c)). 

Algorithm 3  The Generation of Pareto Front Grids 

Input:  Pop, GK, z*, znad 

OutPut:  {𝑃𝐹𝐺𝑗
𝑖} 

 1:   for i = 1 to m do 

 2:      𝑑𝑗 = (𝑧𝑗
𝑛𝑎𝑑 − 𝑧𝑗

∗ + 2𝜎) 𝐺𝐾⁄  

 3:   end for 

 4:   for each x in Pop do 

 5:     for j = 1 to m do  

 6:       𝐺𝑟𝑖𝑑𝑗(𝑥) = ⌈(𝑓𝑗(𝑥) − 𝑧𝑗
∗ + 𝜎) 𝑑𝑗⁄ ⌉ 

 7:     end for 

 8:     𝐺𝑟𝑖𝑑(𝑥) = (𝐺𝑟𝑖𝑑1(𝑥), … , 𝐺𝑟𝑖𝑑𝑚(𝑥)) 

 9:   end for 

 10: for i = 1 to m do  

 11:   for j = 1 to GK do 

 12:     Find the solution set 𝑆𝑖(𝑗) 

 13:     𝑔𝑚𝑖𝑛 = min{ 𝐺𝑟𝑖𝑑(𝑆𝑖(𝑗))} 

 14:     for each x in 𝑆𝑖(𝑗) do 

 15:       if 𝐺𝑟𝑖𝑑𝑗(𝑥) = 𝑔𝑚𝑖𝑛 then 

 16:         𝑃𝐹𝐺𝑗
𝑖 = 𝑃𝐹𝐺𝑗

𝑖 ∪ 𝑥 

 17:       end if 

 18:     end for 

 19:   end for 

 20: end for 

 

 

Algorithm 4  The Environmental Selection 

Input:  1) U: the combined population from Pop and the offspring, 2) N: the 

population size; 

OutPut:  a new solution set Pop. 

 1:  [{F}, l ] = Non-Dominated-Sort (U) 

// Function: Non-Dominated-Sort(SP) is defined to sort the //SP using  the 

non-dominated sort in //NSGA-II [7] 

 2:  𝑃𝑜𝑝 = 𝐹1 ∪ ⋯ ∪ 𝐹𝑙−1 

 3:  [Knee_Point] = Find_Knee_Point(𝐹𝑙) 

// Function: Find_Knee_Point(𝐹𝑙) is defined to find Knee Point as in KnEA 

[24] 

 4:  𝑃𝑜𝑝 = 𝑃𝑜𝑝 ∪ (𝐹𝑙 ∪ 𝐾𝑛𝑒𝑒_𝑃𝑜𝑖𝑛𝑡) 

 5:  if |𝑃𝑜𝑝| > 𝑁 then 

 6:    delete |𝑃𝑜𝑝| − 𝑁 solutions from Pop which belong to (𝐹𝑙 ∪

𝐾𝑛𝑒𝑒_𝑃𝑜𝑖𝑛𝑡) and have the maximum distance to the hyper-plane 

 7:  else 

 8:    add 𝑁 − |𝑃𝑜𝑝| solutions from 𝐹𝑙 − (𝐹𝑙 ∪ 𝐾𝑛𝑒𝑒_𝑃𝑜𝑖𝑛𝑡) which have 

the minimum distance to the hyper-plane 

 9:  end if 

 

  

 
Fig. 5.  The grid-based Knee point 
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C. The Environment Selection based on Knee Point 

Based on the characteristics of the grid decomposition, we 

adopt the concept of knee point [23-25] in each PFG and 

propose the grid-based knee point selection on offspring 

population to form the next generation. 

As can be seen from Fig. 5, in the process of generating the 

grid, solutions are divided into different grids, each containing 

a number of neighboring solutions within the grid (i.e. the black 

dots represent solutions in the same grid). The dotted blue line 

is drawn in Fig. 5 between the ideal point with the nadir point, 

and the vertical blue line represents the Hyper-plane in Fig. 5. 

The knee point is defined as the solution which is the closest to 

the Hyper-plane in the grid. 

By using the fast non-dominate sorting, the first 𝑙  layer 

Pareto fronts {𝐹1, … , 𝐹𝑙} can be obtained, where (|𝐹1| + ⋯ +
|𝐹𝑙| > 𝑁 , |𝐹1| + ⋯ + |𝐹𝑙−1| < 𝑁 ), 𝑃𝑜𝑝 = 𝐹1 ∪ ⋯ ∪ 𝐹𝑙−1 ) 

(lines 1-2). For each solution 𝑥 in 𝐹𝑙, the distance to the Hyper-

plane is calculated. All knee points are added to the population 

Pop (lines 3-4). If |𝑃𝑜𝑝| > 𝑁, then |𝑃𝑜𝑝| − 𝑁 solutions with 

the largest distance to the Hyper-plane are removed. If |𝑃𝑜𝑝| <
𝑁, then 𝑁 − |𝑃𝑜𝑝| solutions which have the smallest distance 

to the Hyper-plane are added to Pop (lines 5-9).   

IV. PERFORMANCE EVALUATION 

In this section, we first provide the basic information of the 

benchmark test instances used in this experiment, then present 

 

Fig. 6.  The comparison of IGD values 
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TABLE I 

CHARACTERISTIC OF THE GLT AND UF TEST FUNCTIONS 

 

Test Problem m N D Feature 

UF1 2 300 30 Convex 

UF2 2 300 30 Convex 

UF3 2 300 30 Convex 

UF4 2 300 30 Concave 

UF5 2 300 30 Linear, Disconnected 

UF6 2 300 30 Linear, Disconnected 

UF7 2 300 30 Linear 

UF8 3 600 30 Concave 

UF9 3 600 30 Disconnected 

UF10 3 600 30 Concave 

GLT1 2 300 10 Linear, Disconnected 

GLT2 2 300 10 Convex 

GLT3 2 300 10 Convex 

GLT4 2 300 10 Convex, Disconnected 

GLT5 3 300 10 Convex 

GLT6 3 300 10 Convex, Disconnected 
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the performance evaluation indicators used, and then we 

TABLE III 

COMPARISONS OF IGD ON GLT PROBLEMS 

 

instance  PFG-MOEA CDG-MOEA ε-MOEA GrEA MOEA/D-DE MOEA/D MSOPS-II NSGA-III 

GLT1 
mean 1.242E-03 1.918E-03 1.409E-01 6.835E-02 1.179E-03 1.422E-01 8.231E-02 4.043E-02 

std 2.300E-05 1.476E-04 5.575E-02 4.997E-02 9.424E-07 7.864E-02 1.897E-02 1.396E-02 

GLT2 
mean 9.911E-03 1.666E-02 5.504E-01 9.140E-02 1.395E-01 1.862E+00 2.465E-01 6.284E-02 

std 2.344E-04 1.897E-03 8.896E-02 1.065E-01 2.500E-02 1.283E-02 1.800E-01 3.977E-02 

GLT3 
mean 1.800E-03 1.890E-03 3.394E-01 4.339E-02 6.094E-03 3.092E-01 1.014E-01 3.294E-02 

std 2.137E-05 3.900E-05 9.738E-02 2.087E-02 7.864E-05 1.083E-03 4.416E-03 1.489E-02 

GLT4 
mean 2.530E-03 2.985E-03 3.410E-01 9.472E-02 3.383E-03 2.255E-01 3.061E-02 8.999E-02 

std 3.922E-02 5.005E-05 1.317E-01 6.179E-02 5.105E-05 2.613E-01 5.857E-03 7.395E-02 

GLT5 
mean 1.975E-02 2.372E-02 1.822E-01 1.077E-01 1.169E-01 1.492E-01 1.189E-01 9.520E-02 

std 3.697E-03 1.735E-03 2.228E-02 3.635E-03 2.885E-04 1.459E-03 6.514E-03 2.531E-03 

GLT6 
mean 1.550E-02 3.178E-02 1.588E-01 1.171E-01 1.190E-01 2.559E-01 1.796E-01 1.167E-01 

std 2.305E-03 5.346E-03 1.048E-02 6.230E-03 1.068E-05 7.422E-02 4.364E-02 1.791E-03 

best/all  6/6 1/6 0/6 0/6 0/6 0/6 0/6 0/6 

+/−/   6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 

 

 

 

 

 

 

TABLE II 
PARAMETER SETTING 

 

Parameters Value 

The crossover rate in the DE operator 𝐶𝑅 = 1.0 

The weighting factor in the DE operator  𝐹 = 0.5 

The distribution index   = 20 

The mutation rate  𝑝𝑚 = 1/𝑛 

The number of evaluation times 3000000 

the neighboring solution size in MOEA/D-DE 20 

the probability of selecting neighbor in CDG-MOEA  𝛿 = 0.9 

𝐺𝐾 for the two-dimensional optimization problem in CDG-MOEA 180 

𝐺𝐾 for the three-dimensional optimization problem in CDG-MOEA 30 

𝐺𝐾 in PFG-MOEA 5 

 

 

TABLE IV 
COMPARISONS OF IGD ON UF PROBLEMS 

 

instance  PFG-MOEA CGD-MOEA ε-MOEA GrEA 
MOEA/D-

DE 
MOEA/D MSOPS-II NSGA-III 

UF1 
mean 2.084E-03 2.592E-03 1.241E-01 8.100E-02 2.164E-03 2.180E-01 7.208E-02 8.501E-02 

std 4.843E-04 8.238E-05 1.773E-02 6.140E-03 4.535E-04 8.952E-02 1.227E-02 7.699E-03 

UF2 
mean 4.969E-03 9.264E-03 7.234E-02 2.550E-02 1.161E-02 1.267E-01 4.314E-02 2.463E-02 

std 1.654E-03 1.335E-03 4.200E-03 6.498E-03 9.155E-03 5.994E-02 9.458E-03 2.623E-03 

UF3 
mean 3.808E-03 2.835E-02 2.220E-01 1.367E-01 9.245E-03 3.060E-01 2.967E-01 1.604E-01 

std 4.709E-02 1.054E-02 5.687E-02 2.210E-02 6.751E-03 2.817E-02 1.495E-02 3.197E-02 

UF4 
mean 4.280E-02 4.372E-02 7.631E-02 4.319E-02 6.461E-02 5.139E-02 4.018E-02 4.062E-02 

std 4.194E-03 7.395E-04 5.292E-03 8.043E-04 5.114E-03 2.664E-03 4.385E-04 3.581E-04 

UF5 
mean 2.356E-01 1.704E-01 2.681E-01 2.050E-01 3.941E-01 4.896E-01 2.440E-01 2.437E-01 

std 1.336E-01 2.641E-02 6.040E-02 3.224E-02 2.028E-01 7.231E-02 4.193E-02 4.857E-02 

UF6 
mean 5.331E-02 8.604E-02 2.247E-01 1.166E-01 3.907E-01 3.472E-01 1.634E-01 1.263E-01 

std 8.827E-02 1.432E-02 1.290E-01 8.692E-03 2.840E-01 1.376E-01 1.227E-01 4.313E-03 

UF7 
mean 2.609E-03 3.282E-03 1.577E-01 3.719E-02 8.586E-03 4.478E-01 1.647E-01 3.119E-02 

std 6.395E-02 1.481E-04 1.443E-01 5.784E-03 8.009E-03 6.592E-02 1.759E-01 4.742E-03 

UF8 
mean 1.380E-01 8.539E-02 4.814E-01 2.230E-01 7.835E-02 3.468E-01 2.326E-01 5.191E-01 

std 1.512E-01 1.387E-02 1.132E-01 1.276E-01 1.886E-02 2.846E-01 1.455E-02 1.730E-02 

UF9 
mean 5.333E-02 5.814E-02 2.410E-01 1.060E-01 1.060E-01 2.639E-01 2.527E-01 1.869E-01 

std 1.056E-01 7.899E-03 1.317E-01 3.845E-02 7.957E-02 1.875E-02 8.799E-02 4.801E-02 

UF10 
mean 9.456E-01 1.779E+00 5.578E-01 3.087E-01 5.128E-01 7.596E-01 3.087E-01 3.652E-01 

std 4.789E-01 2.790E-01 8.686E-02 3.823E-02 5.615E-02 1.463E-01 6.669E-02 4.288E-02 

best/all  7/10 2/10 0/10 1/10 0/10 0/10 0/10 0/10 

+/−/   8/2/0 10/0/0 8/1/1 10/0/0 10/0/0 10/0/0 9/1/0 
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describe the parameter settings of this experiment. Three groups 

of experiments have been carried out as follows: 

1) The comparison of the performance of the proposed Nadir 

Point Selection Method 

2) The performance comparison between PFG-MOEA and 

State-of-the-Arts Approaches:  

a) Comparison of IGD values of experimental results 

of various algorithms 

b) Comparison of HV values of experimental results of 

various algorithms 

c) Comparison of Pareto front graphs of experimental 

results of various algorithms 

3) The comparison of the computing time.  

A. Benchmark Test Instances 

The performance of the proposed PFG-MOEA is firstly 

tested on 16 benchmark functions, including UF1-10 [26] and 

GLT1-6 [27, 28] shown in Table I. In the table, m is the 

objective number, N is the population size, and D is the number 

of decision variables. Among these problems, UF1-7 and 

GLT1-4 are two-objective optimization problems, UF8-10 and 

GLT5-6 are three-objective optimization problems. UF series 

test functions are commonly used benchmark functions, which 

can be used to demonstrate the convergence and diversity of 

algorithms for MOPs. GLT test functions have more complex 

PFs, which can be used to test the robustness of algorithms for 

solving complex MOPs.  

B. Performance Evaluation Metrics 

Two commonly used performance evaluation metrics are 

used to evaluate the performance of our proposed algorithms. 

1) Inverted Generational Distance (IGD) [29] is to measure 

the convergence and diversity of the approximate solution set, 

which calculates the average distance between the approximate 

solution set and a set of uniformly sampled solutions of the true 

PF. The smaller the IGD value, the better the performance of 

the solution set. 

Let 𝑃∗ be a set of uniformly sampled solutions of the true PF 

of the MOP, and 𝑃𝑜𝑝 be a set of approximate non-dominated 

solutions obtained by the optimization algorithm. Then IGD of 

𝑃𝑜𝑝 can be expressed as follows in (13): 

 IGD(𝑃𝑜𝑝, 𝑃∗) =
1

|𝑃∗|
∑ 𝑑𝑖𝑠𝑡(𝑣, 𝑃𝑜𝑝)𝑣∈𝑃∗  (13) 

Where 𝑑𝑖𝑠𝑡(𝑣, 𝑃𝑜𝑝)  calculates the Euclidean distance 

between solution 𝑣 and the nearest solution in the solution set 

𝑃𝑜𝑝, and |𝑃∗| is the number of solutions in 𝑃∗. 

2) Hypervolume (HV) [30]  is a metric to measure the area that 

is dominated by a set of solutions for a given reference point as 

the boundary. The larger the HV value, the better this set of 

solutions. 

Assuming 𝑃𝑜𝑝 is a set of solutions and 𝑟 = (𝑟1, … , 𝑟𝑚)𝑇  is 

the reference point, HV can be calculated as follows in (14): 

 𝐻𝑉(𝑆) = 𝑣𝑜𝑙𝑢𝑚𝑛(⋃ [𝑥1, 𝑟1] × ⋯ ×𝑥∈𝑃𝑜𝑝 [𝑥𝑚, 𝑟𝑚]) (14) 

Both IGD and HV values can measure the convergence and 

diversity of a solution set. We select these two metrics to 

compare the quality of solution sets generated by different 

algorithms. 

C. Experimental Settings 

The parameter settings in the comparative experiments are 

shown in Table II. All experiments were conducted via 

PlatEMO [31] with MATLAB R2016a on Intel Core i7-8700k 

(4.70GHz). Each algorithm was run independently for 30 times 

on each test problem, and the average value of each metric and 

the standard deviation are compared.  

 

TABLE V 

COMPARISONS OF HV ON GLT PROBLEMS 
 

instance  PFG-MOEA CDG-MOEA ε-MOEA GrEA MOEA/D-DE MOEA/D MSOPS-II NSGA-III 

GLT1 
mean 8.482E-01 8.128E-01 5.161E-01 6.365E-01 8.297E-01 5.567E-01 6.474E-01 6.710E-01 

std 1.680E-02 3.679E-03 9.400E-02 7.764E-02 2.151E-02 8.780E-02 4.418E-02 3.672E-02 

GLT2 
mean 1.247E+01 1.223E+01 1.132E+01 1.204E+01 1.217E+01 9.948E+00 1.164E+01 1.209E+01 

std 9.864E-03 2.245E-04 2.875E-02 1.988E-02 1.150E-02 3.962E-03 3.172E-02 1.276E-02 

GLT3 
mean 1.418E+00 1.389E+00 1.320E+00 1.378E+00 1.389E+00 1.350E+00 1.367E+00 1.381E+00 

std 1.340E-02 6.441E-04 8.426E-03 7.225E-03 5.225E-03 5.683E-03 5.595E-03 7.225E-03 

GLT4 
mean 1.729E+00 1.635E+00 1.099E+00 1.537E+00 1.666E+00 1.473E+00 1.558E+00 1.580E+00 

std 1.444E-02 9.133E-05 1.453E-01 1.445E-02 1.834E-02 6.393E-02 7.280E-03 1.350E-02 

GLT5 
mean 1.687E+00 1.676E+00 1.500E+00 1.597E+00 1.617E+00 1.619E+00 1.616E+00 1.625E+00 

std 2.442E-04 2.481E-03 1.917E-02 6.595E-03 2.608E-03 1.079E-02 7.000E-03 8.820E-03 

GLT6 
mean 1.674E+00 1.686E+00 1.531E+00 1.596E+00 1.619E+00 1.349E+00 1.545E+00 1.616E+00 

std 1.166E-03 1.281E-03 9.985E-03 1.532E-02 9.418E-03 1.432E-01 2.712E-02 1.071E-02 

best/all  5/6 1/6 0/6 0/6 0/6 0/6 0/6 0/6 

+/−/   6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 
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D. The Effectiveness of the Proposed Nadir Point Selection 

Method 

 To verify the effectiveness of the statistic strategy based 

nadir point selection method, two variants of PFG-MOEA have 

been designed, namely PFG-MOEA (UpdateZ) with the new 

nadir point selection method, and PFG-MOEA (maxZ) with the 

classical strategy, where the nadir point is set as the maximum 

value for each objective in the population. We compare PFG-

MOEA (UpdateZ) and PFG-MOEA (maxZ) with the recent 

CDG-MOEA with respect to IGD values. PFG-MOEA 

(UpdateZ) converged the fastest on 17 out of 23 test problems, 

and has the same convergence speed as the PFG-MOEA 

(maxZ), while converged slower on 3 test functions. The results 

of the IGD convergence curve of three algorithms on some 

selected test problems are shown in Fig. 6. We can see that 

PFG-MOEA (UpdateZ) with the new nadir point selection 

method can obtain better IGD values than the other two 

algorithms and PFG-MOEA (UpdateZ) also has the best the 

convergence speed of IGD.  

 

 

 

 
 

Fig. 7.  The comparison of Pareto Fronts on the GLT4 Problem 

  

 

TABLE VI 
COMPARISONS OF HV ON UF PROBLEMS 

 

instance  PFG-MOEA CGD-MOEA ε-MOEA GrEA 
MOEA/D-

DE 
MOEA/D MSOPS-II NSGA-III 

UF1 
mean 3.724E+00 2.836E+00 1.635E+00 1.702E+00 1.816E+00 1.469E+00 1.652E+00 1.711E+00 

std 7.851E-03 9.105E-03 9.633E-03 3.928E-02 1.493E-02 9.422E-02 1.643E-02 2.628E-02 

UF2 
mean 3.708E+00 2.824E+00 1.718E+00 1.799E+00 1.807E+00 1.678E+00 1.740E+00 1.797E+00 

std 1.078E-02 1.011E-02 1.871E-02 1.932E-02 1.695E-02 2.772E-02 2.270E-02 5.727E-03 

UF3 
mean 3.676E+00 2.938E+00 1.368E+00 1.526E+00 1.830E+00 1.286E+00 1.309E+00 1.460E+00 

std 5.886E-02 1.180E-02 4.924E-02 1.681E-02 1.776E-02 2.030E-02 5.459E-03 3.797E-02 

UF4 
mean 3.320E+00 3.141E+00 1.577E+00 1.604E+00 1.594E+00 1.538E+00 1.610E+00 1.611E+00 

std 1.500E-02 1.366E-02 1.417E-02 1.190E-02 1.011E-02 1.441E-02 1.055E-02 1.033E-02 

UF5 
mean 2.648E+00 3.157E+00 1.275E+00 1.474E+00 1.151E+00 1.019E+00 1.272E+00 1.304E+00 

std 5.729E-02 2.484E-02 4.579E-02 6.433E-02 6.582E-02 4.583E-02 3.094E-02 3.379E-02 

UF6 
mean 3.264E+00 3.136E+00 1.302E+00 1.391E+00 1.224E+00 1.140E+00 1.376E+00 1.444E+00 

std 1.009E-01 2.099E-02 9.416E-02 7.445E-02 1.236E-01 7.614E-02 4.314E-02 7.117E-02 

UF7 
mean 3.588E+00 2.732E+00 1.558E+00 1.701E+00 1.718E+00 1.142E+00 1.524E+00 1.722E+00 

std 1.511E-02 1.161E-02 9.388E-02 1.062E-02 2.528E-02 1.607E-02 1.343E-01 6.221E-03 

UF8 
mean 6.139E+00 7.323E+00 6.403E+00 6.827E+00 7.243E+00 6.005E+00 6.427E+00 6.400E+00 

std 8.830E-02 1.054E-03 1.778E-02 4.768E-02 9.044E-03 1.531E-01 1.513E-02 5.099E-03 

UF9 
mean 7.754E+00 7.653E+00 6.648E+00 7.350E+00 7.406E+00 6.147E+00 6.058E+00 6.718E+00 

std 1.207E-01 6.992E-04 5.529E-02 3.322E-02 3.251E-02 2.502E-02 4.785E-02 3.841E-02 

UF10 
mean 4.019E+00 2.185E+00 4.171E+00 5.946E+00 3.514E+00 3.469E+00 6.096E+00 6.131E+00 

std 2.920E-04 2.796E-02 1.359E-01 6.685E-02 1.295E-02 5.263E-02 1.986E-02 3.670E-02 

best/all  7/10 2/10 0/10 1/10 0/10 0/10 0/10 1/10 

+/−/   8/2/0 10/0/0 8/1/1 10/0/0 10/0/0 10/0/0 9/0/1 
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E. The Comparison of  PFG-MOEA with State-of-the-Arts 

Approaches 

In order to test the performance of PFG-MOEA, we compare 

PFG-MOEA with seven state-of-the-art algorithms, including 

three grid-based algorithms (CDG-MOEA [22], ε-MOEA [32], 

GrEA [33]), three decomposition-based algorithms (MOEA/D-

DE [12], MOEA/D [10] and MSOPS-II [34]), and one 

domination based algorithm (NSGA-III [8]). All algorithms 

were performed 30 independent runs on the 16 test GLT and 

UF functions, and the mean value of the results and standard 

deviation at a significance level of 0.05 are reported in Table 

III.  

 

1) The Comparison of IGD 

Table III and Table IV show the experimental results of the 

IGD values of PFG-MOEA compared with the other seven 

algorithms. The best average IGD values have been marked in 

bold in grayed table cells. In the tables, the symbol "+", "−" and 

"≈" indicates that PFG-MOEA is significantly better than, 

worse than, and of no significant difference to the other 

algorithms, respectively. These statistical results summarized in 

the last row of each table indicate that for the GLT series 

functions, PFG-MOEA outperforms other algorithms on all six 

GLT problems in terms of IGD value. For the UF test functions, 

PFG-MOEA outperforms other algorithms on 7 out of 10 

problems. For the UF5 and UF8 functions, CDG-MOEA 

performed the best, and GrEA outperformed other algorithms 

on the UF10 function. PFG-MOEA has the overall best results 

among the eight algorithms. 

 

2) The Comparison of HV 

Table V and Table VI compare the HV values of PFG-

MOEA with those of other seven algorithms. The best average 

results have been marked in bold with the gray shadow. From 

the experimental results, we can see that for the GLT functions, 

PFG-MOEA has the best performance on 5 out of 6 GLT 

problems. For UF functions, PFG-MOEA outperformed 7 out 

of 10 test problems. CDG-MOEA obtained the best results on 

the UF5 and UF8 functions, and NSGA-III performed the best 

on the UF10 function. The above results show that PFG-MOEA 

has the overall best performance for most cases. 

 

3) The Comparison of Pareto Fronts 

Fig. 7 shows Pareto fronts obtained by different algorithms 

on the GLT4 function. It can be seen that PFG-MOEA obtained 

well distributed Pareto Front along the true PF, which is better 

than most of the other algorithms. Although CDG-MOEA and 

 

 

 
 

Fig. 8.  The comparison of Pareto Fronts on the UF3 Problem 
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MOEA/D-DE perform slightly better on some regions of the 

PF, but some solutions are missing in the first segment of the 

PF. 

Fig. 8 shows the Pareto fronts generated by the eight 

algorithms on the UF3 function. Due to the complexity of the 

problem, it can be seen that the grid-based algorithms PFG-

MOEA and CDG-MOEA perform better than the other six 

algorithms. PFG-MOEA performed better than CDG-MOEA in 

the first segment of the PF by finding more Pareto solutions.  

Experimental results in Fig. 7 and Fig. 8 demonstrate that 

PFG-MOEA obtained the best Pareto fronts in terms of the 

diversity for problems with both regular and irregular Pareto 

Fronts compared with other seven algorithms. 

 

4) The Comparison of the Computing Time 

In this group of experiments, we compare the computing time 

of PFG-MOEA and CDG-MOEA on four representative test 

instances GLT1, UF1, GLT5, and UF8. We set the population 

size to 300 on instances GLT1-6 and UF1-7, while the 

population size is set to 500 on UF8-10. For a fair comparison, 

all algorithms are set the same parameters. The average 

computing time is shown in Fig.9(a). In order to compare the 

time required for the algorithm in each generation, the average 

evolution time of each generation is shown in Fig.9(b). It can 

be seen that for all four instances, the computing time of PFG-

MOEA is much less than that of CDG_MOEA. We also 

observed that the computation time of PFG-MOEA grows 

relatively slower than CDG-MOEA, with the increasing of the 

number of objectives.  

V. CONCLUSION  

In this work, we propose a new grid-based decomposition 

multi-objective evolutionary algorithm, namely PFG-MOEA, 

to make full use of the inherent characteristics of the grid which 

reflect the information of the neighborhood structure in the 

solution. The definition of Pareto Front Grid has been proposed 

for the first time, which showed to guide the search during the 

evolutionary process. Based on the idea of knee point, a new 

grid-based knee point selection method has also been proposed. 

A novel statistical estimation-based nadir point selection 

strategy has been presented. With these new mechanisms, the 

PFG-MOEA has demonstrated the overall best performance on 

most benchmark test problems compared with seven other 

state-of-the-art multi-objective evolutionary algorithms. As the 

extension of CDG-MOEA in the literature, PFG-MOEA is 

effective by consuming much less computing time. Future 

research includes the extension of PFG-MOEA for solving 

many-objective optimization problems and the application of 

PFG-MOEA to real world multi/many-objective problems. 
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