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Abstract 

The recent successes of artificial intelligence, in particular machine learning, 
for solving real-world problems have motivated the advances towards auto-
mated design of algorithms and systems with less human involvement. In 
machine learning and meta-heuristic search algorithms, different lines of rel-
evant research are now emerging, with findings feeding into each other. This 
book presents a selection of some recent advances across automated machine 
learning (AutoML) and automated algorithm design (AutoAD), where the 
effectiveness and efficiency of techniques and algorithms has been enhanced 
with the support of new taxonomies, models, theories, as well as frameworks 
and benchmarks. The emerging new lines of exciting research directions in 
AutoML and AutoAD present new challenge across multiple research com-
munities in machine learning, evolutionary computation and optimisation 
research. 

1.1 Introduction 

With the recent fast developments of artificial intelligence in tackling prac-
tical problems comes an increasing demand of easy-to-use and general tools 
and intelligent methods with less human involvement for solving new prob-
lems. These include automated machine learning (AutoML) and automated 
algorithm design (AutoAD) in a broad range of application domains. This 
book selects some of the latest developments across AutoML and AutoAD, 
and presents key challenges and research issues, calling for and encouraging 
further advances towards automated intelligent algorithms and systems for 
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solving more new real-world problems. 

The wide range of recent developments range from the automated design of 
heuristics [12, 10, 20] and control software [2] using meta-heuristics and ge-
netic programming [8] to automated design of neural architectures [23] and 
classifier algorithms [16] using evolutionary algorithms. Application problems 
include mainly combinatorial optimisation [12, 10, 20, 8] and classification 
problems [23, 16, 3]. 

Within the context of automated design of machine learning and meta-
heuristics search algorithms discussed in Section 3.2, some interesting re-
search issues are emerging, posing challenges on future advances across dif-
ferent disciplines of machine learning, evolutionary computation and optimi-
sation research as discussed in Section 1.3. The chapter concludes in Section 
3.6 by summrising developments and challenges, and encouraging future re-
search on several directions. 

1.2 Automated Algorithm Design and Machine Learning 

Until recently, the success of most intelligent algorithms and systems heavily 
replies on the extensive human expertise, which often highly depends on ex-
perts’ skills on making various decisions. These include, at a lower level, how 
to fine-tune the parameters or settings of the chosen algorithms or models; 
and at a higher level, how to select the most appropriate algorithms or system 
architecture for solving the problems at hand. The algorithms or systems 
designed manually in an ad-hoc manner are also often problem-specific, re-
quiring a large amount of effort adapting existing algorithms or re-designing 
new algorithms. These algorithms are often discarded after problem solving, 
wasting extensive human resources. 

With the fast developments in machine learning, there is now evidence that 
AutoML [5] is achievable [3] in both research and practice. There exist highly 
effective machine learning methods ready for use for non-experts with limited 
knowledge. Based on the definitions of components in AutoML, the brief 
review in Chapter 2 on the AutoML methodologies in supervised learning 
provides a nice complimentary introduction to the field [3]. Of particular 
interest is that evolutionary computation naturally plays an important role in 
Optimizer, one of the three important components in AutoML methods. 
Some of the challenges identified in Chapter 2, e.g. large scale optimisation and 
transfer of learning in AutoML, require further collaboration and integration 
of machine learning and computational search algorithms. 
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Chapter 8 provides an excellent example of the latest developments in Au-
toML integrating machine learning and evolutionary algorithms [23]. The 
computational expensive offline optimisation in neural architecture search 
(NAS) is extended to federated learning within distributed real-time systems 
for edge devices. With the focus on reducing computational costs, two 
NSGA-II based multi-objective evolutionary algorithms have been investi-
gated to automatic online NAS for image classification. Much more research 
remains to be addressed with evolutionary computation for NAS, including 
the model averaging aggregation for tasks of different features and security of 
privacy leakage. 

Research in AutoAD comes along another line of developments in optimi-
sation research. In building a standard towards automated algorithm design, 
Chapter 3 presents a new taxonomy to categorise relevant research into three 
streams, namely automated algorithm configuration, algorithm selection and 
algorithm composition [18]. With different decisions of parameters, 
algorithms and algorithm components, automated algorithm design can be 
defined as an optimisation problem exploring a search space of these deci-
sions. A new model named General Combinatorial Optimisation Problem 
(GCOP) is defined [19], where elementary algorithm components are consid-
ered as decision variables in the search space of algorithms. Chapter 3 also 
demonstrates that various meta-heuristics and selection hyper-heuristics can 
be defined with this unified general GCOP model. 

In designing control software for robot swarms, Chapter 5 presents a modular 
principle in AutoMoDe to automatically assemble predefined parametric 
modules [2]. By exploring a search space of all possible low-level individual 
behaviors of robots, AutoMoDe optimises the performance of their collective 
high-level behaviors. This modular principle presents an interesting contrast to 
that of the GCOP model in Chapter 3, where the design of meta-heuristic 
algorithms is defined as an optimisation problem upon the search space of 
elementary algorithmic components [18]. AutoMoDe automatically selects, 
combines and fine-tunes predefined modules to design control software offline 
by using Iterated F-race [1], a highly successful framework for automated 
configuration of meta-heuristics for combinatorial optimisation problems. 

Chapter 4 presents an analysis and overview of time complexity and learning in 
selection hyper-heuristics for function optimisation [12]. It is evidenced that 
mixing multiple low-level heuristics and switching acceptance criteria are 
necessary to achieve optimal performance. Furthermore, adaptive learning is 
crucial in selecting low-level heuristics at different stages of hyper-heuristics. 
The importance of comprehension in automated selection of low-level heuris-
tics is highlighted in Chapter 7, where powerful tools in machine learning 
might be of great support. Time complexity is less studied in the existing 
literature but is a fundamental issue to underpin algorithm design. With 
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analysis on time and landscapes, theoretical studies can lead to more insights 
and knowledge on the algorithm behavior and performance. 

While Chapter 4 focuses on selection hyper-heuristics [12], Chapters 6, 9 and 
10 concern generation hyper-heuristics, presenting interesting findings for 
both combinatorial optimisation [8, 20] and classification [16] problems. 
Compared to the extensively studied selection hyper-heuristics, generation 
hyper-heuristics are relatively less studied. They focus on automatic generation 
of heuristics themselves, thus removing human involvement in providing 
problem-specific low-level heuristics. Problem attributes need to be provided 
instead, in addition to a set of general operators / grammars. Genetic pro-
gramming and grammatical evolution have been employed, addressing inter-
esting research issues of common solution representation [20] in Chapter 6, 
knowledge transfer [8] in Chapter 9, and fitness landscape [16] in Chapter 10. 

Chapter 10 concerns the automated design of classifier algorithms, where 
chromosomes in grammatical evolution consist of design decisions for differ-
ent classification tasks [16]. In contrast to the automated search of neural 
architectures in Chapter 8, this presents a different perspective of integrating 
evolutionary computation and machine learning in AutoML. With the fitness 
analysis on genetic algorithm and grammatical evolution, it is also interesting 
to reveal the different features of the landscapes for multi-class classification 
and binary classification. In the literature, theoretical analysis such as fitness 
landscape or time complexity received less research attention, however, is 
crucial in sustaining the fundamentals towards effective AutoML [3] and 
AutoAD [18]. 

In Chapter 6, an ”intermediate” graph-based solution representation is stud-
ied for designing constructive and perturbative heuristics for highly different 
combinatiorial optimisation problems [20]. The research makes an important 
step towards further removing expert’s involvement in defining solution en-
coding, to which the problem-specific heuristics are applied. Defining 
common problem encoding is often neglected in the literature, however, is 
highly important in AutoAD. Further advances on extending the scope of 
cross-domain general solution encoding is crucial in sharing and retaining 
knowledge of automatically designed effective algorithms addressing different 
problem domains of common structures. 

Chapter 9 highlights the importance of knowledge transfer [8], which also 
receives less attention in the literature of hyper-heuristics, and also meta-
heuristics. In guiding the search directions, it is shown that reusing subtrees in 
the initialisation is more effective than feature importance evolved auto-
matically by genetic programming. Challenging issues remain, including the 
lack of understanding on truly useful subtrees and building blocks, and the 
handling of redundant branches (i.e. issue of bloating) in genetic program- 
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ming. 

Chapter 7 presents an insightful overview of hyper-heuristics within the context 
of autonomous problem solvers [10]. One interesting research issue discussed is 
on the set of low-level heuristics, which is still hand-picked by human experts 
for particular problems; while a set of strong problem-specific heuristics does 
not always warranty strong performance of hyper-heuristics. This echos the 
definition of a set of elementary algorithm components in GCOP in Chapter 3, 
which could also deliver strong performance if simple components are 
composed effectively [19]. The observations are also supported by the the-
oretical proof in Chapter 2, where multiple low-level heuristics are necessary to 
achieve optimal performance of hyper-heuristics. 

1.3 Challenges in Automated Design of Algorithms and 
Machine Learning 

Recent developments in AutoML have achieved great success in solving var-
ious real-world problems based on advanced research, see surveys in [5] and 
Chapter 4. In AutoAD, different lines of research emerge on automated con-
figuration [21] and automated selection [5] of algorithms. Based on the new 
taxonomy of algorithm design, another line of research on automated algo-
rithm composition has also been defined [18], where hyper-heuristics 
represent a subset of such methods. In the autonomy of algorithms and 
techniques in artificial intelligence, it is interesting to see that different lines of 
developments integrating machine learning and evolutionary computation are 
emerging, underpinning each other to address wider range of problems. 

It is difficult to review exclusively the latest advances in AutoML and Au-
toAD across multiple disciplines, however, some of the key challenges and re-
search issues can be identified based on the blend of the latest developments 
presented in this book. These include in particular the compreshension and 
interpretability of the algorithms/techniques [12, 8] and theoretical studies 
[10, 3, 18], which are still neglected although frequently mentioned in the lit-
erature. Research addressing these challenges all underpin further advances in 
AutoML and AutoAD. 

Theoretical Fundamentals 

Theoretical analysis is relatively less concerned in AutoAD. The overview of 
time complexity in Chapter 2 on selection hyper-heuristics proves the ne-
cessity of multiple low-level heuristics and acceptance criteria, as well as 
adaptive learning in selecting effective low-level heuristics [6]. In generation 
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hyper-heuristics, it is highly interesting that the fitness landscapes for genetic 
algorithms and grammatical evolution present different ruggedness for binary 
and multi-class classifications [16]. Hyper-heuristics haven shown to achieve 
to some extent free lunches [22], and are more general than some algorithms 
[10, 17]. More findings with rigorous theoretical analysis will further underpin 
the fundamentals and better understanding in AutoAD. 

While well-defined models and architectures exist in AutoML, in meta-
heuristic algorithms, there is a lack of common models or frameworks. Most 
frameworks in AutoAD are defined descriptively, lacking a fundamentally 
consistent structure and standard. More research is needed towards modeling 
and standardising algorithm design [18]; otherwise many of the research 
findings remain local [10] for specific problems, or are discarded in the rich but 
scattered literature. Some progress has been made, including the highly 
successful Iterated F-race framework for automated algorithm configurations 
[1] and the widely adapted HyFlex platform [11] and EvoHyp [13] in hyper-
heuristics [14]. In [19], a new taxonomy is defined based on the decisions 
considered in AutoAD, and supports the development of common models 
such as GCOP in Chapter 3 in automated design of general search algorithms. 

The idea of modularity presents an interesting principle in designing both 
control software in Chapter 5 and meta-heuristic algorithms in Chapter 3. In 
the two distinctive domains, with the search spaces of behaviors and algorith-
mic components, respectively, the automated design of control software and 
search algorithms can both be defined as optimisation problems, where mod-
ules and components are automatically assembled and optimised. Existing 
powerful optimisation platforms and frameworks including Iterated F-Race 
[1] and HyFlex [11] can also be adapted to quickly implement the optimi-
sation, and potentially sustain knowledge sharing across different disciplines 
and application domains. 

In AutoAD, establishing general and common solution encoding presents an-
other challenge for different combinatorial optimisation problems. In Chapter 
6, a graph-based encoding shows to be successful representing multiple differ-
ent problems. With common encoding, knowledge and expertise in AutoAD 
could be accumulated and retained in a consistent structure for comparable 
and transferable investigations in different domains. 

Interpretability, Reusability and Generality 

AutoML demands extensive search, generating a vast amount of information 
[3]. Extensive information also exists in AutoAD on designing or generating 
effective algorithms. The relatively well-structured machine learning models 
can support analysis on designing effective systems thus to extract reusable 
knowledge. However, this is not the case in search algorithms, where there is 
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a lack of common frameworks or unified models, based on which systematic 
analysis could be conducted to identify explainable or reusable knowledge. In 
both AutoML and AutoAD, the extensive information is yet to be collected 
in consistent structures and analysed to extract transferable and reusable 
knowledge in designing effective search algorithms and machine learning sys-
tems. 

While search algorithms have been criticised with lacking theoretical support, 
explainability and interpretability are often known as unsolved challenges in 
machine learning. Some attempts have been made to transfer the information 
evolved in genetic programming [8, 20] into knowledge of generating heuris-
tics. With the consistent data structures in genetic programming, potential 
knowledge in grammars [20], subtrees and feature importance [8] could be re-
tained and reused in designing effective algorithms addressing similar or even 
different tasks or problems. More collaborative efforts across disciplines are 
needed in both AutoML and AutoAD to reveal new transferable knowledge 
thus to enhance the reusability and generality of algorithms. 

In retaining and reusing knowledge evolved automatically, the issue of com-
mon solution encoding is understudied, although the search of algorithms are 
highly dependant on solution representation. The scope of general encoding 
for multiple domains remains an interesting research issue; while the common 
graph-based representation in Chapter 6 presents a promising step towards 
reusing some general properties and knowledge in the automatically generated 
grammars for highly different combinatorial optimisation problems, and 
potentially a diverse range of other problems. 

Generality of algorithms, although widely mentioned in hyper-heuristics [14], 
is still often neglected in the literature. Chapter 7 considers generality of algo-
rithms at a higher level with three criteria, namely across multiple problems, 
distinctive heuristic sets, and varying experimental conditions. Based on a new 
taxonomy, a four-level assessment of algorithm generality [15] has been 
defined upon problem domain, problems, instances and benchmark set from 
a multi-objective perspective. In operational research, the well-established 
benchmarks (e.g. the OR Library') provide excellent problem sets for gener-
ality assessments in designing effective algorithms. 

With further advances of interpretability, reusability and generality, the reuse 
the methods in AutoML and AutoAD with less human involvement will lead 
to enormous savings of human effort and accumulate continuous and consis-
tent research developments. 

1 http://people.brunel.ac.uk/∼mastjjb/jeb/info.html 
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Integration of Machine Learning and Optimisation Research 

The integration of research outcomes across machine learning and optimi-
sation research has enhanced the efficiency of algorithms, advances fed into 
each other to address various issues in AutoML and AutoAD. Evolutionary 
computation has been successfully applied in the intensive search in machine 
learning, enhancing the optimisation in AutoML. For example, in AutoML, 
powerful evolutionary algorithms have been used in federated learning to re-
duce computational costs to improve neural architecture search [23]. 

In AutoAD, feature engineering in machine learning may contribute to iden-
tifying the key attributes of search spaces or problems when designing search 
algorithms e.g. genetic programming. In hyper-heuristics, the selection of low-
level heuristics, parametric modules or algorithmic components can be 
naturally supported by offline or online learning [9]. The great success re-
cently in machine learning means efficient models can be easily adapted in 
learning the knowledge in AutoAD, enhancing the comprehension of algo-
rithm performance. 

Benchmarking and Competitions 

As reviewed in [3], the series of AutoML challenges, from the Prediction chal-
lenge [4] since 2006 to the most recent AutoDL competition [7] in 2020, not 
only led to some highly effective and popular AutoML methods, but also set 
consistent standards, boosting advanced research in AutoML. In AutoAD, 
platforms and frameworks such as Iterated F-Race [1], HyFlex [11] and Evo-
Hyp [13] have also been widely adapted by more researchers. However, sig-
nificant standalone research presumably still stays local and hidden, and has 
made limited contributions to the literature [10] without benchmarking and 
standardising the outcomes. 

1.4 Conclusions 

With the recent successes in machine learning and optimisation research, re-
searchers are now exploring the scope of designing effective algorithms or in-
telligent methods with less human involvement, towards automated machine 
learning (AutoML) and automated algorithm design (AutoAD). Promising 
findings have emerged at the interface of different disciplines, and outcomes 
have fed into each other, addressing a broad range of research issues and 
leading to new challenges in AutoML and AutoAD. 
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With the well-structured pipelines and models in machine learning, power-

ful optimisation algorithms have been successfully adapted in evolutionary 

computation to enhance the efficiency of search for either hyperparameters 

or neural architectures in AutoML. With the frameworks and large amount 

of datasets, outcomes can be effectively accumulated, establishing further 

comprehension of machine learning. Challenges in AutoML now remain to 

be on the interpretability of the models, which also represents a key issue of 

explainable AI in machine learning communities. 

In AutoAD, different streams of research advances have resulted into au-

tomatically designed algorithms which outperform some manually designed 

algorithms. However, there is still a lack of theoretical studies, for example on 

general standards and models, as well as common problem encoding for 

different problems. The establishment of these fundamentals are important so 

that research findings are accessible across the different communities with 

common structures, and not remain hidden or locally. Some efforts have been 

made in building new taxonomies and models, although there is still a scope 

of further collaboration in machine learning and evolutionary computation, 

impacting on real-world problems. 
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