HYBRIDISING LOCAL SEARCH WITH BRANCH-AND-BOUND FOR
CONSTRAINED PORTFOLIO SELECTION PROBLEMS

Fang He"? and Rong Qu'
1 The Automated Scheduling, Optimisation and Planning (ASAP) Group, School of Computer Science
The University of Nottingham, Nottingham, NG8 1BB, UK
2 Department of Computer Science, Faculty of Science and Technology, University of Westminster,
WIB 2HW, UK
Email: hef@westminster.ac.uk, rxq@cs.nott.ac.uk

KEYWORDS
Hybrid algorithm; Branch-and-Bound; local search;

portfolio selection problems

ABSTRACT

In this paper, we investigate a constrained portfolio
selection problem with cardinality constraint, minimum
size and position constraints, and non-convex
transaction cost. A hybrid method named Local Search
Branch-and-Bound (LS-B&B) which integrates local
search with B&B is proposed based on the property of
the problem, i.e. cardinality constraint. To eliminate the
computational burden which is mainly due to the
cardinality constraint, the corresponding set of binary
variables is identified as core variables. Variable fixing
(Bixby, Fenelon et al. 2000) is applied on the core
variables, together with a local search, to generate a
sequence of simplified sub-problems. The default B&B
search then solves these restricted and simplified sub-
problems optimally due to their reduced size
comparing to the original one. Due to the inherent
similar structures in the sub-problems, the solution
information is reused to evoke the repairing heuristics
and thus accelerate the solving procedure of the sub-
problems in B&B. The tight upper bound identified at
early stage of the search can discard more sub-
problems to speed up the LS-B&B search to the
optimal solution to the original problem. Our study is
performed on a set of portfolio selection problems with
non-convex transaction costs and a number of trading
constraints based on the extended mean-variance
model. Computational experiments demonstrate the
effectiveness of the algorithm by wusing less
computational time.

INTRODUCTION

In this paper, we tackle the single-period portfolio
selection problem (PSP). In the problem concerned, a
number of transactions can be carried out to adjust the
portfolio during a given trading period. We take into
account these transaction costs as well as a set of

trading constraints. These include the cardinality
constraint (a limit on the total number of assets held in
the portfolio, i.e. select k out n (k<n) assets to be held
in the portfolio), the minimum position size constraint
(bounds on the amount of each asset), the minimum
trade size constraint (bounds on the amount of
transaction occurred on each asset) and transaction
costs. The goal of the problem is to minimize the risk
of the adjusted portfolio and the transaction costs
incurred, while satisfying the set of trading constraints
in feasible portfolios. The aim of this paper is to
develop a hybrid method to solve the complex PSP
efficiently. The techniques developed here are
employed to solve a specific problem, but it could be
applied to other variants of PSP with cardinality
constraint, and possible other combinatorial problems
outside this domain.

If the transaction cost function is linear, then the
problem is generally easy to solve. However, a
function which better reflects realistic transaction costs
is usually non-convex (Konno and Wijayanayake
2001). Some research show that realistic transaction
costs usually include a fixed fee, and thus the cost is
relatively higher when the amount of transaction is
smaller (Konno and Wijayanayake 2001, Konno and
Wijayanayake 2002). The transaction cost is thus
usually represented by a linear piecewise concave
function. This turns the problem into a non-convex
optimisation problem, which is more difficult to solve.

In this paper, we propose a new hybrid approach which
integrates local search with B&B to solve the non-
convex portfolio selection problem heuristically. We
conceptually divide the decision variables into two
parts: the set of core variables which defines the
cardinality constraint and the rest of variables.
Variable fixing is applied to the core variables. The
result of variable fixing has two facets: values (i.e. 0, 1)
are assigned to the core binary variables and simplified
sub-problem is generated. A local search together with
variable fixing are performed on the core variables to
generate a sequence of simplified sub-problems. These
sub-problems are traversed heuristically to find the



promising sub-problems, i.e. whose lower bounds are
not greater than upper bounds. The promising sub-
problems then are solved by a default B&B. Value
assignments by variable fixing, together with the value
assignments by a default B&B, form the complete
solutions to the original problem. The best solution to
the sub-problem, together with the value assignments
by variable fixing approximates an optimal solution to
the original problem.

PROBLEM FORMULATION

Consider that an investor is holding an initial portfolio
that consists of a set of n assets. To respond to the
changes in the market, the investor must review its
current portfolio, with the view to carry out a number
of transactions. It is assumed that the new portfolio will
be held for a fixed time period. The investor’s goal is
to minimize both the transaction costs occurred and the
risk of the assets in the portfolio at the end of the
investment period, while satisfying a set of constraints.
These constraints typically include meeting the target
return, the minimum position size, and the minimum
trading size.

Let w; be the percentage of capital invested in asset 7,
i=1,..,n. We shall use a weight vector w’

=W, w),...,w) to denote an initial portfolio. The

percentage amount transacted in each asset is specified
by weight vector x = (x;, x,..., xn)T , x; < 0 means
selling and x; >0 means buying. A weight vector w
denotes the portfolio after the revision. After the
transaction, the adjusted portfolio is w = w’ + x, and is
held for a fixed period of time. We denote the return of
asset i at the end of the investment period as 7; and the
expected return of the portfolio as R. We denote the
covariance between assets i and j in return as o;. We

further define ¢(x) as the sum of individual

transaction costs associated with each x; Based on the
basic MV model, the portfolio selection problem with
transaction costs can thus be modeled as follows:

i=n j=n
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where objective (1) is to minimize the risk of the
portfolio and the transaction costs incurred. (2) ensures
the expected return. F in (3) represents a set of feasible
portfolios subject to all the related constraints. These
constraints include the minimum position size, the
minimum trading size, etc., which will be detailed next.
In this paper, we model the problem as a single

objective problem where (1) is the sum of two objects
with the same weights.

The transaction cost is the sum of the transaction costs
associated with the assets traded:

$0 =3 6x)

i=1
In this paper, we consider a model that includes a fixed
fee plus a linear cost, thus leads to a non-convex
function, as shown in Fig. 1. This function is also
applied in (Lobo, Fazel et al. 2007) . The fixed fee

charged for buying and selling asset i is denoted as ,B;'
and 8, and the variable costs associated to buying

and selling asset i are denoted by a;’ and «; . The

transaction cost function is given in (4), and shown in
Fig. 1:
0,x,=0;
$(x)= B+ ai+xi X% >0; 4)

B —ox;,x, <0;

Fig.1 The transaction cost function (Lobo, Fazel et al.
2007)

Problem Model with Transaction Cost and Trading
Constraints

Parameter

n The total number of assets

i The index of assets, i=1,...,n

w’ Initial position of the portfolio

o, Covariance between assets i and j

7 Return of asset i at the end of the investment
period

R Expected return of the portfolio

B Fixed cost for buying or selling asset i

a Variable cost rate for buying or selling asset i



W Minimum hold position

min

X Minimum trading amount
k Number of assets in the portfolio after
transaction
Variable Feature
w; Revised position of the Decision variable

portfolio after transaction

X Amount of buying asset i
X! Amount of selling asset i
z. Hold asset i or not in the

revised portfolio

2 Buy asset i or not
Z’f‘@” Sell asset 7 or not
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Decision variable

Auxiliary variable

Auxiliary variable

Auxiliary variable

(PSP)

There are two groups of variables in the formulation of
the problem, as denoted by the “feature” column. w;,

y sell sell
xibu) s X

! are decision variables. z, , z/ and 2 are

auxiliary variables which are used to formulate the
constraints. The column “core variable” denotes which
variables are core variables. The selection of the core
variables is problem dependent. Several researchers
have pointed out that the cardinality constraint presents
the greatest computational challenge to the problem
(Bienstock 1996, Jobst, Horniman et al. 2001, Stoyan
and Kwon 2010, Stoyan and Kwon 2011). Actually, the
PSP with cardinality constraint has been recognized to
be NP-complete (Bienstock 1996, Mansini and
Speranza 1999). To eliminate the cardinality constraint,

we identify variables z, which define the cardinality

constraint i . —k as a set of core variables.
i

i=1

Based on the model PSP, we will introduce two
additional reduced models (PSP basic, PSP sub) as
follows which will be applied to evaluate the
neighbourhood in the local search and to calculate the
lower bound:
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LS-B&B TO PSP ALGORITHM



In this section, we propose a new hybrid search, named
LS-B&B to PSP according to the property of the
problem. To the PSP with binary variable z; we are
dealing with, we know that exactly k£ out n binary
variables will be assigned to 1 in the feasible and
optimal solutions. With this knowledge, we can apply
variable fixing on a set of variables at one time,
resulting into simplified sub-problem. A local search is
performed on these set of variables to generate a
sequence of sub-problems, and the best solution will be
identified among them.

Framework of LS-B&B to PSP

We present the framework of LS- B&B to PSP, as
shown in Fig.2.

LS-B&B consists of four main components. The first
component is the initialization phase (line 1). In this
phase, variable fixing is applied to the core variables to
generate a simplified sub-problem. Lower bound and
upper bound of the problem are also initialized in this
phase.

The second component is a default B&B search (line
7). It is called to solve the sub-problems to optimality.
This solution to the sub-problem together with the
variable assignments by variable fixing, forms the
solution to the original problem.

The third component is a local search (line 9) which is
performed on set Z of variable z; to update sets S and.
With the updated S, the sub-problem is updated
correspondingly. Therefore, we state that this local
search generates a sequence of sub-problems.

The fourth component is an overall search procedure
(the while loop). In this search procedure, a local
search, variable fixing and a default B&B work
together to identify the best solution among the sub-
problems by pruning inferior sub-problems and solving
the promising sub-problems to optimality.

We present explanations of these components next.
Components of LS-B&B to PSP
Variable fixing

(Hard) variable fixing has been used in MIP context to
divide a problem into sub-problems. It assigns values
to a subset of variables of the original problem. That is,
certain variables are fixed to the given values. Based on
the definition of variable fixing in (Bixby, Fenelon et
al. 2000, Lazic, Hanafi et al. 2009), we apply this
variable fixing to simplify the original problem into
sub-problems in the following way. We first denote a
subsets S on the binary variable set B: SC B. Then we

fix variables in subsets S to 1, to obtain sub-problems
P, asfollows:

P, :minc’x

sub,,

s.t.Ax < b;

x,=LVjeScB#UJ

x,=[0,1,VjeC
In this way, we simplify the original problem to a sub-
problem. One selection of the subsets S can generate
one possible simplified sub-problem of the original
problem. Therefore, we apply variable fixing together

with a local search to generate a sequence of sub-
problems where we will search for the best solution.

LS- B&B

LB: lower bound;

UB: upper bound;

(h, x,w, z): asolution (x, w, z) of the problem with a
corresponding objective value 4;

solveB&B: a default B&B solver;

Z: set of z;;

S: subset of Z,

P,,,: the original problem defined by model (PSP);

P, - sub-problem defined by variable fixing;

1: Initialization phase
2: while (the number of iterations not met)

3: If (LB (P, )=UB)

4 prune the sub-problem P,

5 go to line 9;

6: Else

" (b x.,2) = solveBB( P, )

*®

if h <UB set UB =h,
perform a Local search on set Z; 10:

e

generate sub-problems by variable fixing: P, =

P, U (z=1),z,ES;
11: set (x* w* z*) as the best solution among all (x, w, z)
and /#* be the corresponding objective value;

Fig. 2 The LS-B&B algorithm to PSP
Initialization phase
The main task of the initialization phase is the
generation of a sub-problems p by variable fixing
on variables z; on sets S. From the definition of P,
we can state that P, is P, with the initialization of
variables in S'to 1.

In the initialization phase, the lower bound is obtained
by solving the continuous relaxation of the sub-



problem p ~based on model (PSP sub), and the upper

bound is set as oo.
Default B&B search

As we stated in the framework of LS-B&B, each of the
sub-problems itself is still a MIQP problem due to the
presence of binary variables z” and z*. However,
due to the assignments of variable z; by variable fixing,
the size of the sub-problem is much smaller comparing
to the original one. Therefore, sub-problems can be
handled by the default B&B. In this paper, the default
B&B algorithm in the MIQP solver in CPLEX is
applied to solve the promising sub-problems (when LB
(P, ) < UB) to optimality. What is more, the inherent

similar structures of the sub-problems enable a very
successful reuse of solution information, so the
repairing heuristics embedded in solveB&B are evoked
to improve the search.

Overall search procedure

The overall search explores the sequence of sub-
problems. This is shown in the while loop in Fig.2. In
this search, the lower bound of the sub-problem p , is

computed by a general QP solver, which relaxes the
sub-problem to a continuous problem, i.e. model PSP
sub (line 3 in Fig.2). Here, the computation of the
lower bound is different from the evaluation of a
solution in the local search, which is based on model
PSP basic. The objective value of the feasible solution
to the concerned sub-problem p  serves as the upper

bound of the original problem. If the lower bound of a
sub-problem is above the current upper bound found so
far, we can discard this sub-problem during the search
(line 4 in Fig.2). Otherwise, these promising sub-
problems are solved exactly by a default B&B (line 7
in Fig.2). The solutions to the sub-problems together
with the assignments of core variables consist of the
feasible solutions to the complete original problem.
These sub-problems are solved in sequence, and the
best solution among them, together with the variable
assignments done by variable fixing, approximates the
optimal solution to the original problem. The whole
procedure terminates by a pre-defined number of
iterations in the local search. Therefore, the search is an
incomplete search. It cannot guarantee optimality of the
solution due to the nature of the local search on core
variables z;.

The local search together with variable fixing creates a
sequence of sub-problems which have very similar
structures. They only differ in the coefficient or the
right-hand side of constraints which are related to z.
When solving this sequence of sub-problems, the
solution information such as the basis list and basis
factors from its simplex tableau (i.e., we apply the

extended tableau simplex algorithm in the default
MIQP solver) for the current problem are stored, and
this can be retrieved and applied to the successive sub-
problems. This means the solution information (i.e.,
basis list and basis factors) of the problem p , can thus

be reused to obtain solution to P, S0 that P, ~does

not need to be solved again from scratch. This solution
information reusing thus can evoke the repairing
heuristics embedded in the default B&B solver. This
solution information reusing has shown to be extremely
efficient.

EXPERIMENTAL RESULTS

To evealuate our algorithm on more general benchmark
instances, we also concern in this paper the portfolio
optimisation instances publicly available in the OR
library (ORlibrary), with additional constraints derived
from the above real-world problem. Six problem
instances are used to test the algorithm proposed in this
paper, which can be found at (He and Qu, 2014).

We set the minimum proportion of wealth to be
invested in an asset, w,,;,, to 0.01%, and the minimum
transaction amount, x,;,, to 0.01%. We also set the
parameters in the transaction cost function a; to 0.005
and f3; to 0.0001 for all the assets. Other values of & in
the cardinality constraint have been tested, ranging
from 10 to 150 for different sizes of portfolios.

Evaluations on the LS-B&B algorithm

In LS-B&B, after fixing values for variables z; by
variable fixing and the local search, the resulting MIQP
sub-problems are created. If the lower bound of a sub-
problem is not greater than the current upper bound
(we say it is a promising sub-problem, otherwise it will
be pruned), it will be solved by the default B&B in
CPLEX12.0. Therefore, when these sub-problems are
processed, in conclusion four possible situations could
emerge: (1) a sub-problem could be solved by B&B to
optimality; (2) the repairing heuristic mechanism
imbedded in CPLEX could be evoked and applied to a
sub-problem to obtain a feasible solution heuristically;
(3) a sub-problem could be pruned; this will happen if
the optimal solution under continuous relaxation on
model PSP sub is larger than the current upper bound;
and (4) the solution of a sub-problem could be
infeasible.

Table 1 illustrates the behavior of the above four
situations during the processing of sub-problems. The
total CPU time of the algorithm is dependent upon the
CPU time needed for each situation.



Table 1. Information of sub-problem processing.

total

Instance | CPU sub-problem | sub-problem | sub-problem | sub-problem

. solved repaired pruned infeasible
time
Avg Avg Avg Avg
Number CPU [Numb CPU |Number CPU (Numb CPU
time/p time/p time/p time/p
Société | 3 161 56 001 | 398 0006 86 0 | 60 0
Générale

HangS (3.09| 184  0.01 | 178 0.005| 120 0 118 0

DAX [9.00]| 296 0.02| 121 0.01 112 0.01 | 71 0

FTSE (11.44| 79 0.08 [ 102 0.025| 127  0.02 | 292 0

S&P |13.55| 286 0.04 | 114 0.01 71 0 123 0

Nikkei (76.97| 89 040 [ 21 036 | 221 0.08 | 269 0.06

Table 1 clearly indicates that the CPU time for
identifying infeasibility is negligible. The CPU time for
pruning the inferior sub-problem is quite efficient.
Therefore, the more sub-problems pruned, the more
efficient the search is. It can be interpreted from Table
1 that solving sub-problems with repairing heuristics is
quite efficient. These repairing heuristics are the results
of solution information reuse in the B&B solver.
Solving sub-problems exactly is the most time
consuming situation comparing with the other three
situations.

Comparisons with the default B&B in CPLEX

It is worth noting that LS-B&B is a heuristic approach
to the problem. It cannot prove optimality of the
solution due to the nature of the local search on core
variables z; although the sub-problems can be
measured by the optimality gap. In order to evaluate
the quality of the solutions we obtained from LS-B&B,
we compare it against the optimal solution to the
problem. It is however very difficult, if not impossible,
to obtain and prove the optimal solution to the
problems concerned. We therefore calculate the
approximate optimal solution to the problem concerned
by running the default B&B algorithm in CPLEX12.0
for an extensive amount of time.

In the comparison presented in Table 2, we aim to

demonstrate the effectiveness of the repairing heuristic

evoked in our proposed LS- B&B. Therefore, we

present the characteristics of the sub-problems being

repaired by heuristic against the characteristics of the

default B&B. We compare LS-B&B with the default

B&B in Table 2 in terms of the following criteria:

e  The number of nodes being processed in B&B to
obtain the best integer feasible solution;

e The gap between optimality and the quality of the
best feasible solution;

e  If the repairing heuristic is evoked and succeed;
e  The total CPU time required.

Table 2. Comparisons of default B&B and LS-
B&B. + denotes that the repairing heuristics are
succeed. All the CPU time is measured in seconds.

Socicte  Hag by Prop sgp Nikke
Générale  Seng

No. of nodes processed 30 50 150200 147100 130800 35500
Optimality Gap 022% 1.06% 4.66% 3.65% 2.74% 044%
Repair success No No No No No No
Total CPU time 180

No. of nodes processed 60 80 541800 486700 365800 105000
Optimality Gap 0.1% 029% 4.66% 3.63% 2.74% 043%

Default B&B Repair success No No No No No No
(original problem) | Total CPU time 600
No. of nodes processed 0+ 0+ 50+ 30+ 30+ 50+
Repair success Yes Yes  Yes Yes Yes Yes
LS-B&B Optimality gap* 022% 1.07% 4.65% 3.67% 2.75% 044%

(sub-problem) Total CPU time * 316 309 900 1144 1355 7697

In Table 2, in LS-B&B, the number of nodes processed
is the average of nodes being processed with repairing
heuristics. From Table 2 we can see that by simplifying
the problem through variable fixing, the repairing
heuristics succeed in LS- B&B approach. The repairing
heuristics cannot be evoked by the default B&B while
solving the original problem.

Without the simplification, the default B&B needs to
explore a much larger number of nodes in the search to
obtain feasible solutions, while LS-B&B with
simplification requires much less time, shown in Table
2. For example, for the largest instance Nikkei, more
than 35,500 nodes have been explored in the default
B&B to obtain a feasible solution with a gap of 0.44%.

The optimality gap of solution obtained by LS- B&B is
calculated by gap = (fis — fz) / fz, Where fis is the
objective value obtained by LS- B&B, and f; is the
objective value of continuous relaxation. Table 2
shows that, to achieve solutions of similar quality (as
measured by the optimality gap), the CPU time needed
by the default B&B is much greater than that required
by LS-B&B (e.g. 180 CPU seconds as opposed to
76.97 seconds for the instance Nikkie).

The comparison of LS-B&B with the default B&B can
be more clearly illustrated in Fig. 3, which plots of the
objective values of LS-B&B and the approximate
optimal values obtained by the default B&B with
extensive runtime.

It can be seen that LS-B&B converges very well for
instances Société Générale, Hang Seng and Nikkei,
where the gap between the objective values of LS-
B&B and approximate optimal is very small. For
instance DAX, the best solution of LS-B&B is even
better than the approximate optimal value. For
instances FTSE and S&P, the gap is slightly larger.
However, it should be noted that LS-B&B spends



significantly less time (3-79 seconds) than the default
B&B (180 and 600 seconds).

Société Générale Hang Seng
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Fig. 3 The gap between LS-B&B and the
approximate optimal by the default B&B

CONCLUSIONS

In this paper, we have introduced the hybrid LS-B&B
method to solve the portfolio selection problem with
practical trading constraints and transaction costs. We
have analysed a specific PSP problem which is
modelled as MIQP. The hybrid method -closely
integrates local search with B&B. It implements an
incomplete search which aims to seek near optimal
solutions in a limited computational time. It simplifies
the problem into much smaller sub-problems, which
are much easier to solve than the original complete
problem, hence can be searched intensively by B&B. It
has been demonstrated by our experiments that the
repairing heuristics are evoked by solution information
reusing in solving sub-problems, thus the successive
sub-problems can be solved more efficiently. The
heuristic initialization of the core variables in our
problem provides a tight upper bound to prune more
sub-problems.
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