
1

1

Lecture held at School of CS & IT
The University of Nottingham

March 2006

by

Wilhelm Erben
HTWG Konstanz

wilhelm.erben@htwg-konstanz.de

Genetic Algorithms

2

The Travelling Salesman problemIV

Mathematical FoundationsIII

How Do Genetic Algorithms Work?II

Optimisation ProblemsI

Genetic Algorithms

Table of Contents

3

Falkenauer, Emanuel
Genetic Algorithms and Grouping Problems.
Chichester: John Wiley & Sons, 1998

Michalewicz, Zbigniew
Genetic Algorithms + Data Structures = Evolution Programs.
Berlin; Heidelberg; New York: Springer, 3rd edition 1997

Goldberg, David E.
Genetic Algorithms in Search, Optimization, and Machine Learning.
Reading, MA: Addison-Wesley, 1989

Davis, L. (ed.)
Handbook of Genetic Algorithms.
New York: Van Nostrand Reinhold, 1996

Genetic Algorithms

References

4

Genetic Algorithms

John von Holland,
K. A. De Jong

(Univ. of Michigan, 1975)

Evolutionsstrategien

Ingo Rechenberg
Hans P. Schwefel

(Technical Univ. of Berlin, 1973)

Evolutionary Algorithms
(since 1985)

Genetic Algorithms

History

mailto:wilhelm.erben@htwg-konstanz.de

2

5

Part I
Optimisation Problems

Genetic Algorithms

6

The travelling salesman must visit every city
in his territory exactly once

and then return back to the starting point.

Given the cost of travel between all cities,
how should he plan his itinerary for

minimum total cost?

Total Cost

f(x) = c(1;7) + c(7;8) + + c(1;5)

Search Space

Given n cities, there are
(n-1)! different routes. 3

5

7

4

9

6

2

8

1
c(1;7)

c(7;8)

c(8;9)

c(4;9)

c(4;6)
 c(2;6)

c(2;3)

c(3;5)

c(1;5)

starting point

Genetic Algorithms

Travelling Salesman Problem

7

Bin Packing
Problem

Vehicle Routeing
Problem

Task Allocation
Problem

Job-Shop Scheduling
Problem

VLSI Design
Problem

optimal placing of logic modules,
minimal wire-length

maximal machine utilisation,
minimal service time, minimal cost

optimal allocation of tasks to parallel processors,
minimal execution time

optimal routeing,
minimal number of vehicles and idle runs

optimal allocation of items to ‘bins’,
minimal number of bins

Genetic Algorithms

Combinatorial Optimisation

8

• The search space S is
the finite set of possible solutions.

• Each solution x∈S is also called an individual.

• An objective function

f: S → lR

must be defined.

• The objective is to maximize or minimize
this function.

Genetic Algorithms

Search Space & Objective Function

3

9

search space S

co
st

search space S

pr
of

it

...or cost function,
in case of minimization.

The objective function f
is also called

profit function,
in case of maximization.

global
maximum

global
minimum

local optima

Genetic Algorithms

Objective Function

10

In what follows,
we usually assume that ...

f(x)

x

• ... the objective function has been mapped to a nonnegative function f.

In that case f is called fitness function,
and the value f(x) is the fitness of the individual x∈S.

xmax

• we shall focus upon maximizing f,
i. e. searching for an individual xmax∈S with maximal fitness.

f(xmax)

Genetic Algorithms

Fitness Function

11

• Combinatorial Explosion

The search space S is finite, but extremely large.

As a consequence,
an exhaustive search for the optimal solution cannot be performed
within reasonable time.

• The optimisation problem is NP-hard,

i.e. the time required to solve it is expected to increase
exponentially with the size of the problem.

Genetic Algorithms

Hard Problems

12

• Given a hard optimisation problem,
it is often possible to find an efficient heuristic approach.

Such algorithms do not guarantee to find an optimal solution.

They may only find near optimal solutions.
These, however, may be acceptable for most applications.

• For some hard problems probabilistic operators,
which use random choices as a tool to guide the search,
can be applied as well.

Genetic Algorithms

Heuristics, Probabilistic Operators

4

13

Part II
How Do Genetic Algorithms Work?

Genetic Algorithms

14

fitnessphenotypegenotype

chromosomes,
strings

(encoded solutions)

problem solutions,
individuals

(decoded solutions)

decoding environment,
fitness function

value
of the solution

Genetic Algorithms

The Paradigm

15

binary string (chromosome) composed of genes

0 1 1 1 0 1 0 0 0

• In classic genetic algorithms,
binary strings of fixed length m are used.

• In order to be able to encode each solution of the
search space S in a one-to-one way, the inequality

2m ≥ card(S)

must hold.

Genetic Algorithms

Binary Coding

16

x(1) x(2) x(5)x(3) x(4)

fit
ne

ss
fu

nc
tio

n

• The initial population P(0), the first generation,
is created randomly.

• In an iterative process, populations P(t) at generation t,
(t = 1,2,…) are constituted.

Genetic Algorithms

Population

• Genetic algorithms work from a population P,
i. e. a series of chromosomes.

5

17

0 1 1 1 0 1

0 1 1 1 0 1

1 1 0 0 0 1

0 1 0 0 0 1

0 1 1 1 1 1

1 0 0 1 0 1

0 0 1 0 1 0

In classic genetic algorithms, the population size N remains
unchanged from one generation to the next.

The constant population size
is one of the

parameters of a genetic
algorithm.

Typical values are
N=20, N=50, N=100, …

Genetic Algorithms

Population Size

18

Initialisation of P(0)

Terminate?

no

P(t)

Designate
Result

yes

t:=0

t:=t+1

P'(t)

Evaluation of P(t) P''(t)

Recombination in P'(t)

Mutation in P''(t)

Selection from P(t)

Genetic Algorithms

Flowchart

19

• Reproduction (Selection)

Copy existing chromosomes, chosen at random,
to the new population.

• Recombination (Crossover)

Create new chromosomes by recombining randomly
chosen substrings from existing chromosomes.

• Mutation

Create a new chromosome from an existing one
by performing small random changes.

Genetic Algorithms

The Genetic Operators

20

Roulette Wheel Selection (fitness-proportional selection;
stochastic sampling with replacement) is an instance of a
reproduction operator:

1,001170Total

361/1170 = 0.313614

64/1170 = 0.06643

576/1170 = 0.495762

169/1170 = 0.141691

probability pifitness fiNo. i

6%

31%
14%

49%

sample population

spin the weighted roulette wheel
N times

Genetic Algorithms

Reproduction

6

21

0 1 1 1 0 1

0 1 1 1 0 1

1 1 0 0 0 1

0 1 0 0 0 1

0 1 1 1 1 1

1 0 0 1 0 1

0 0 1 0 1 0

• After reproduction, a specified percentage pc of chromosomes
in the mating pool P'(t) is chosen at random.

The cross-over probability pc is
another parameter of the genetic

algorithm.

Typical values are
between 60% and 90%.

mating pool
P'(t)

• The selected chromosomes are mated at random,
and each pair of parents undergoes a crossover operation,
such as the following one ….

Genetic Algorithms

Recombination

22

• Randomly select a cross-over site between 1 and m-1.

• Each parent is then split at this point into two fragments.

0 1 1 10 1 1 1
0 1 0 0 0

1 0 0 1
1 1 1 0 1

1 1 1 0 1

1 0 0 1
0 1 0 0 0

offspring

• Offspring are obtained by joining the non-corresponding
fragments of each parent.

parents

Genetic Algorithms

Recombination

A classical recombination operator is the One-point Crossover:

23

0 1 1 1 0 1

0 1 1 1 0 1

1 1 0 0 0 1

0 1 0 0 0 1

0 1 1 1 1 1

1 0 0 1 0 1

0 0 1 0 1 0

• After recombination, a specified percentage pm of genes
in the pool P''(t) is chosen at random.

The mutation probability pm is another
parameter of the genetic algorithm.

Typical values are below 1%.

genetic pool
P''(t)

• A selected parent chromosome undergoes a mutation
operation, such as the following one …

Genetic Algorithms

Mutation

24

The classical mutation operator is the Bit-flip Mutation:

• The value of the selected gene is simply inverted.

0 1 1
1

0 1 0 0 0

0 1 1
0

0 1 0 0 0 offspring

parent

Genetic Algorithms

Mutation

7

25

Generational Replacement

In classical genetic algorithms,
the progeny

obtained by crossover or mutation
replaces the parent chromosomes.

Steady State Model

In each generation,
just a few chromosomes,
namely the worst ones,

are replaced by the progeny.

Genetic Algorithms

Steady State vs Classical GAs

26

Part III
Mathematical Foundations

Genetic Algorithms

27

* 1 * 1 0 1 0 0 0

The schema

is a similarity template
describing the following four similar binary strings:

0 1 0 1 0 1 0 0 0

0 1 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0 0

1 1 1 1 0 1 0 0 0

• The don’t care symbol * matches
either a 0 or a 1 at its particular
position.

• A schema with k don’t care symbols
represents a set of 2k binary strings.

Genetic Algorithms

Schemata

28

0

1

2

3

4

-1 0 1 2

test function
f(x)=x2

0 0 0 0.... 1 0 0 0.... 1 1 1 1....

1 * * *....

1 1 * *....

phenotype

genotype

Genetic Algorithms

Search for Promising Patterns

8

29

* * * * 0 1 0 * *

0 1 0 1 0 1 0 0 0

0 1 1 1 0 1 0 1 0

1 1 0 1 0 0 0 0 0

1 1 0 1 0 0 0 0 0

1 0 1 1 0 1 1 0 0

1 1 1 1 0 1 0 0 0

1 1 0 1 0 0 0 0 0

fitness values

40

30

20

20

30

50

20

Suppose, schema S represents good solutions.

40

30

50

30(t)f 7
210 == 40(t)f 3

120
S ==

population P(t)

1
)t(f
)t(f

3
4S >=

S

average fitness

whole population strings matched by schema S

Schema S is
above average.

Genetic Algorithms

Above-Average Schemata

30

* * * * 0 1 0 * *

0 1 1 1
0 1 0 0 0

1 0 0 1
1 1 1 0 1

0 1 1 1
1 1 1 0 1

1 0 0 1
0 1 0 0 0

0 1 * * * * * * 0

0 1 1 1 0 1 0 0 0Binary string s

is matched by schema S1

... as well as schema S2

Schema S1 survives the following one-point crossover.
Schema S2 , however, would be destroyed!

s'

s

∈ S1
∉ S2

∉ S1
∉ S2

Note:
In the example, the defining length of schema S1,

i.e. the distance between its first and its last fixed position,
is relatively small: δ(S1)=2. But δ(S2)=8 is maximal!

Genetic Algorithms

Schemata Surviving Crossover

31

* * * * 0 1 0 * *

0 1 1 1 0 1 0 0 0Binary string s

is matched by schemas S:

Note:
In the example, the order of schema S,

i.e. its number of fixed positions,
is relatively small: o(S)=3.

0 1
0

1 0 1 0 0
1

Schema S survives bit-flip mutations, if and only if
the mutated genes do not belong to the fixed positions of schema S:

∈ S

Genetic Algorithms

Schemata Surviving Mutation

32

John H. Holland proved this theorem
for classic genetic algorithms, i.e. for
GAs using

• roulette wheel selection,
• one-point crossover
• and bit-flip mutation.

Schemata S with
above-average fitness,
short defining length

and low order,
receive an increasing expected number ξS of copies

in subsequent generations.







 ⋅−

−
δ

−⋅⋅ξ≥+ξ ⋅ mc
S

SS p)S(o
1m
)S(p1

)t(f
)t(f)t()1t(

Genetic Algorithms

The Schema Theorem

9

33

Building Blocks:
short, low-order, above-average schemata

“(.....) instead of building high-performance strings
by trying every conceivable combination,

we construct better and better strings
from the best partial solutions of past samplings.” *)

“Just as a child creates magnificent fortresses
through the arrangement of simple blocks of wood,

so does a genetic algorithm seek near optimal performance
through the juxtaposition of building blocks.” *)

*) Goldberg 1989, p.41

Genetic Algorithms

Building Block Hypothesis

34

“Select the smallest alphabet
that permits a natural expression of the

problem.” *)

The Principal of
Minimal Alphabets

Genetic Algorithms

Chromosome Representation

*) Goldberg 1989, p.80

35

binary

10011

01000

11000

01101

alphabet of
cardinality 26

T

I

Y

N

fitness
f(x)=x2

361

64

576

169

Schema 11***
leads to good solutions

no coding similarities
to exploit

decimal
x

19

08

24

13

The binary alphabet offers
the maximum number of schemata

per bit of information of any coding.

Genetic Algorithms

Binary vs Nonbinary Codings

36

“Select the smallest alphabet
that permits a natural expression of the problem.”

Goldberg 1989

Nevertheless, …

“What should one do
when elements in the space to be searched

are most naturally represented by more complex data structures
such as arrays, trees, digraphs, etc.

Should one attempt to ‘linearize’ them into a string
representation …”

De Jong 1985

“Adapt the Genetic Operators.
Create crossover and mutation operators for the new type of encoding

by analogy with bit string crossover and mutation operators.
Incorporate domain-based heuristics as operators as well. "

Davis 1991

Genetic Algorithms

“Natural” Data Structures

10

37

Part IV
The Travelling Salesman

Problem

Genetic Algorithms

38

The travelling salesman must visit every city
in his territory exactly once

and then return back to the starting point.

Given the cost of travel between all cities,
how should he plan his itinerary for

minimum total cost?

Total Cost

f(x) = c(1;7) + c(7;8) + + c(1;5)

Search Space

Given n cities, there are
(n-1)! different routes. 3

5

7

4

9

6

2

8

1
c(1;7)

c(7;8)

c(8;9)

c(4;9)

c(4;6)
 c(2;6)

c(2;3)

c(3;5)

c(1;5)

starting point

Genetic Algorithms

Travelling Salesman Problem

39

    36499log9nlogn 22 =⋅=⋅=⋅

0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 0 1

7 8 9 4 6 2 3 51city

3

5

7

4

9

6

2

8

1
c(1;7)

c(7;8)

c(8;9)

c(4;9)

c(4;6)
 c(2;6)

c(2;3)

c(3;5)

c(1;5)

starting point

The routes could be represented
as binary strings of length

Genetic Algorithms

Binary Representation

40

0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 0 1

6 6

City no 6
appears twice!

One-point crossover or bitflip mutation
can produce

illegal chromosomes :

0 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 1 0 1

?

City no 12
does not exist!

4 68

Genetic Algorithms

Problems with this Coding

11

41

Constraints that must not be violated (hard constraints)
can be implemented by imposing penalties

on individuals that violate them.

• In heavily constraint problems,
one runs the risk of spending most time
evaluating illegal chromosomes.

• If high penalties are imposed,
premature convergence to legal
but mediocre chromosomes is possible.

• If the penalties are too moderate,
the GA may evolve illegal chromosomes
that are rated better than those
that do not violate the constraints.

search
space

∼ n!

illegal
chromosomes

∼ nn

Disadvantages

Genetic Algorithms

Handling Constraints

42

Path Representation

1 7 8 9 4 6 2 3 5

Alternative:

• Look for the most natural expression
of the problem.

• Create genetic operators
that avoid building illegal chromosomes.

3

5

7

4

9

6

2

8

1
c(1;7)

c(7;8)

c(8;9)

c(4;9)

c(4;6)
 c(2;6)

c(2;3)

c(3;5)

c(1;5)

starting point

Genetic Algorithms

Nonbinary Representation

43

The following mutation operator
is adapted to the path representation:

Select two cities at random …

.... and swap their positions.

1 7 8 9 4 6 2 3 5

1 7 8
2

4 6
9

3 5

Genetic Algorithms

Swap Mutation

44

parent
s

Also Partially Matched Crossover (PMX)
avoids building illegal chromosomes:

offspring

1 2 3 4 5 6 7 8 9

4 5 2 1 8 7 6 9 3

? 2 3 1 8 7 6 ? 9

? ? 2 4 5 6 7 9 3

4 2 3 1 8 7 6 5 9

1 8 2 4 5 6 7 9 3

Select 2 crossing points at random.

Swap the segments between the 2 points
(“matching section”).

Fill further cities for which there is no conflict.

The matching section defines the mappings

1 ↔ 4, 8 ↔ 5, 7 ↔ 6 und 6 ↔ 7.

Fill the ?-gaps accordingly.

Genetic Algorithms

PMX-Crossover

12

45

parent
s

And also Cycle Crossover (CX) is adapted to the path
representation and produces only valid chromosomes.

offspring

Select a city of the first parent at random, for
instance city 4. The sequence

4 → 8, 8 → 3, 3 → 2, 2 → 1, 1 → 4

is a cycle of this permutation.

Swap the segments belonging to this cycle.
Leave the other cities unchanged.

1 2 3 4 5 6 7 8 9

4 1 2 8 7 6 9 3 5

1 2 3 4
5 6 7

8
9

4 1 2 8
7 6 9

3
5

4 1 2 8
5 6 7

3
9

1 2 3 4
7 6 9

8
5

The parents define a one-to-one mapping
(permutation):

1 → 4, 2 → 1, 3 → 2

Genetic Algorithms

CX-Crossover

