Meta-heuristic Algorithms

Dr Rong Qu, Associate Professor

ASAP Group, The University of Nottingham
rong.qu@nottingham.ac.uk
http://www.cs.nott.ac.uk/~pszrq

NATCOR — Heuristics and Approximate Algorithms
Nottingham, April, 2016

Optimisation Problems

» For a set of decision variables: X' = (x;, x5, X)
Maximises (or minimises) an objective function: £(X)
Subject to a set of constraints

I.-'] 5 n,
Ras(x) =20+ 1.1_ +1.2 —10(cos 2mxy + cos 2myg). F(X)=-20- ﬂpl 0 ”,J ‘—exp‘ EZCDS{EH‘I;) +20+e
., i=] 4

z; € [—5.12,5.12] x; [30,30]

00

Ea Pictures from Mathworks.com 40 0

ombinatorial Optimisation Problems

» For most of real world optimisation problems

> An exact model cannot be built easily
- Combinatorial explosion: no. of solutions grows exponentially with

the size of the problem

» Search algorithms
> Exact methods: IP, MIP
> Constructive heuristics
- Meta-heuristic algorithms -

MesVarance Eficient Frontier snd Random Portfolos

o1 L .

@

.
pd) 17 4
LT\

TYRE: 1
4 5 3 N S —
FinEfF
Decerber 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 28 30 3
Mae:
M T w T F 8 8 MTWTF S8 MTWTF S5 8§ MTWTF § 5 e .61
D EEE L ETEIEIE D D D NI RN LoLoLoL Aver: B
14 51 11 5o 2a
A DH DH DH DH DH DH DH DH DH DH DH DH DH DH DH DH DH DH DH 2 3 "i;jl 4
B NN R D DL L L LoLoL EEE DD 00
® D DDDOD W R W L L L L L L EN |EN | Bl (& % 4 Time:
13048
D (S DH D E E E DHE E NN E E 137 5.0 tacan]
[P
E E E DHE E E DHDH D D E E DHDH 2110 ter: Bk
595
F L NN D D D D DD 103
= D D D E E D D D D N T RAND 5 T —_—
EIEIETE D DD NN NN L L £ e o
A =|8 512 s 3% = |
Total Penalty 176 L ey pap—
Sort 40 o ST ey e -
Unassigned Shifts D - o I R B o L
1 1
202 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 11 Rand — e — —
R - I A R R A A [P D i = RS
5iea o e asTEAg s
L T T T T R T R I R O O 3z —
FE e T T R O Best’a 2 = e ,um | “'"mmm,
7.9 Emomas ecopscn WSS e T

Combinatorial Optimisation Problems

» Constructive Heuristics
> Simple minded greedy functions: iteratively build a reasonable
solution, one element at a time

» Meta-heuristics
> Single solution based (local search)
- Simulated Annealing, Tabu Search, Variable Neighbourhood Search,
etc.
> Population based
- Genetic algorithm, Memetic algorithm,
EDA, Ant Algorithms, Swarm _— .
Intelligence, etc. o A A e

Local Search

» Starts from initial (complete) solution

» Iteratively moves to a better neighborhood solution
until a local optimum (no better neighborhood)

global maximum

f(X) ¢ . value
I
l |
: | I
Neighborhood of 2 l
solution Teal.. = | l
......... : I
° ..!.I.
- o = : R
X' oo : X
local maximum global maximum
solution solution

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

Local Search

» Representation of the solution
> Solution encoding

» Evaluation function

> Guide the search

» Neighbourhood function
> An operator to change (move) a solution to other solutions

» Acceptance criterion A

> First improvement, best improvement, best of
non-improving solutions

E

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

Local Search

Cces)

Iterations

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

Local Search

» Hill climbing / Steepest Descent

> “Run uphill / downhill and hope you find the top

/ bottom of the hills”

» Simulated annealing
- “Shake it up a lot and then slowly let it settle”

» Tabu search
> “Don't look under the same lamp-post twice”

» Variable Neighbourhood Search

» “Let’s use different transportations i.e. fly / leap / walk, to explore”

» Etc.

» Population based approach
> Genetic algorithms: “survival of the fittest”

- Ant algorithms: “wander around a lot and leave a trai

«_Genetic programming: Learn to program

|II

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

Simulated Annealing

» Physical annealing process: Material is heated and slowly
cooled into a uniform structure

» The first SA algorithm: (Metropolis, 1953)
» SA applied to optimisation problems: (Kirkpatrick, 1982)

» Better moves are always accepted
» Worse moves may be accepted, depends on a probability

Steady
: : : Cool Off
Kirkpatrick, S, Gelatt, C.D., Vecchi, M.P. 2 —L).
1983. Optimization by Simulated
Annealing. Science, 220(4598): 671-680. b %&4. |
r'; on .\;&fr;, ; Ly ”'_l
RGN AN
R e

Figure 1: Sword Annealing Analogy to Explain Simulated Annealing (Copyright Jonathan Becker)

Simulated Annealing

» At temperature ¢ the probability of accepting a worse
solution:

P = exp('lcl/t) >r

» ¢ change in the evaluation function
» '+ a random number between 0 and 1
» £ the current temperature

» The probability of accepting a worse state is a function of
> the temperature t of the system
> the change c in the cost function

Simulated Annealing

» The probability of accepting a worse state is a function of
> the temperature t of the system
> the change c in the cost function

» t decreases: the probability of accepting worse moves
decreases
» t = 0: no worse moves are accepted (i.e. greedy search)

Change Temp exptc¢MD Change Temp exptcm

0.2 0.95 0.810 0.2 0.1 0.13583
0.4 0.95 0.656 04 0.1 0.018339
0.6 0.95 0.532 0.6 0.1 0.0024852
0.8 0.95 0.431 0.8 0.1 0.000335

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

c(es)

Simulated Annealing

ForI =1 to Iter do
t = Schedule[I]
If t = 0 then return Current
Next = random neighbour of Current
c = evaluate[Next] — evaluate[Current]
if ¢ > 0 then Current = Next
else Current = Next with probability exp(-icl/t

» Implement SA : implement greedy search + modified
acceptance criteria explcit

» Cooling Schedule is Aidden in this algorithm: important!

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

SA — Cooling Schedule

» Starting Temperature
» Final Temperature
» Temperature Decrement

» Iterations at each temperature

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

SA — Cooling Schedule

» Starting Temperature
> hot enough: to allow a/most all neighbourhood (else: greedy search)
> not be so hot: random search for sometime
- Estimate a suitable starting temperature:
Reduce quickly to 60% of worse moves are accepted
Use this as the starting temperature

» Final Temperature
> Usually 0, however in practise, not necessary
- tis low: accepting a worse move are almost the sameast =0
> The stopping criteria: either be a suitably low t, or “frozen” at the
current t (i.e. no worse moves are being accepted)

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

SA — Cooling Schedule

» Temperature Decrement

(o)

Enough iterations at each t, however computationally expensive
Compromise
Either: a large number of iterations at a few t's, or
A small number of iterations at many t’s, or
A balance between the two
Linear: t=¢ —x
Geometric: t= t* a
Experience: a = (0.8 and 0.99)
The higher the value of q, the longer it will take

o

o

o

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

SA — Cooling Schedule

» Iterations at each temperature

> A constant number of iterations at each t, or

> One iteration at each t, but decrease t very slowly (Lundy 1986)
t=t/(1+)
where B is a suitably small value

> An alternative: dynamically change the no. of iterations
At higher t's: less no. of iterations
At lower t's: a large no. of iterations, local optimum fully
exploited

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

SA — Acceptance exp(-icl/t)

exptlc/: took about one third of the computation time

» Approximates the exponential (Johnson, 1991)
P(c) =1-|c|/t
» Build a look-up table: values of |c|/t
» Speed up the algorithm: about a third with no significant
effect on solution quality

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

Tabu Search

“The overall approach is to avoid entrapment in cycles by
forbidding or penalizing moves ... in the next iteration to
points in the solution space previously visited (hence
tabu).”

Proposed independently by Glover (1986) and Hansen (1986)

» Accept the best one, even it's low quality (worse move)
» Accepts worse solutions deterministically, to escape from
local optima

Glover, Fred W., Laguna, Manuel. Tabu Search, Springer, 1996

.........
\\\\\

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

Tabu Search

» Uses memory (tabu list) to improve decision making
> Short term memory: prevent revisiting previous solutions

- Tabu list: Records a limited no. of solution attributes (moves,
selections, assignments, etc.)

- Tabu tenure (length of tabu list): No. of iterations a move is
prevented

- FIFO, dynamic
- Long term memory: attributes of elite solutions

Diversification: Discouraging attributes of elite solutions, to
diversify the search to other areas of solution space

Intensification: Give priority to attributes of a set of elite solutions

» Aspiration criteria: accepting an improving solution even it's
generated by a tabu move
- Similar to SA: always accepts better solutions, but accept worse ones

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

Tabu Search

Current = initial solution
While not terminate
Next = the best neighbour of Current
If(not MoveTabu(TL, Next) or Aspiration(Next)) then
Current = Next
Update BestSolutionSeen
TL = Recency(TL + Current)
Endif cs)

End-While
Return BestSolutionSeen

Iterations
NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

Tabu Search — TSP Example

» Short term memory
- Prevent a list of ¢£towns from being selected for a no. of iterations

» Long term memory
> Maintain a list of £towns in the last & best (worst) solutions
- Encourage (or discourage) their selections in future solutions

» Aspiration ﬁ R (e

(\/}\JLQ)\gﬁlg‘ :%\E,f(/'\ e
> Moves in the tabu list k;ggb gi; 0 ,.__v -
generate better solution: i{ /ﬁ w %M A

accept that solution anyway \vm Q;; 35 ,W
- Put it into tabu list }

%Fgr?
L
o g

Tabu Search vs. Simulated Annealing

SA

TS

No. of neighbours at
each move

1

n

Accept worse moves?
How?

Yes
by P = exp(-</t)

Yes, the best neighbour
if it is not tabu-ed

Accept better moves?

Always

Always (aspiration)

Stopping conditions

t=0, or

At a low temperature, or
No improvement after
some iterations

Certain no. of
iterations, or

No improvement after
some iterations

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

Variable Neighbourhood Search

In most local search: only one neighbourhood

To escape from local optimum

SA: move to worse neighbourhoods based on a probability using
cooling schedule

TS: move to not tabued worse neighbourhoods

VNS: systematically changes neighbourhood during search
N, k=1, 2, .. k., : the set of nheighbourhood operators
N,(s): set of solutions in the &’ neighbourhood of solution s

P. Hansen and N. Mladenovic, Variable neighbourhood search: Principles and
applications, EJOR 130: 449-467, 2001

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

Variable Neighbourhood Search

Fact 1. A local minimum w.r.t. one neighbourhood is not
necessary so for another

Fact 2. A global minimum is a local minimum w.r.t. all
possible neighbourhood

Fact 3. For many problems local minima w.r.t several
neighbourhoods are 4
relatively close to
each other

Iterations

Variable Neighborhood Search

Initialisation
Select the set of neighbourhood structures
Ny
Find an initial solution x

Repeat until stopping condition is met
- Set K=1
- Repeat until k=k__,
1. Shaking:. Generate a random point X' in
Ny(x)
2. Local Search: x'' is the obtained optimum

3. Move or not:

— If x" is better than x then x=x" and k=1
- QOtherwise k=k+1

Talbi, Metaheuristics — From design to implementation,
Wiley, 2009

IR e~ -

Variable Neighbourhood Search

Order of neighbourhoods

Typically, order neighbourhoods from smallest to largest

Forward VNS: start with A= 1 and increase kK by one if no
better solution is found; otherwise set K < 1

Backward VNS: start with kK = k., and decrease k by one if no
better solution is found

Extended version: parameters «;,;, and k., set kK € ,;, and
increase k by k., if no better solution is found

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

Variants of VNS

Procedure Reduced VNS
Select {N,}, k=1, ..., k.., initial solution x, stopping condition
k<1
Repeat until k = k__,
X" €< RandomSolution(N,(x))
if f(x") < f(x) then
X € X'
k<1
else k&<k+1
End

Same as basic VNS except: no LocalSearch is applied
Only explores randomly different neighbourhoods
an be faster than standard local search

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

Design VNS

Number and type of neighbourhoods to be used
Order of their use in the search

Strategy for changing the neighbourhoods

Local search methods

Stopping condition

No need of sophisticated acceptance criteria to escape from
local optima
Neighbourhoods: crucial for VNS; all solutions reachable!

Exercise: Design a VNS for TSP

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

Local Search: Design & Improve

» Evaluation function

> Calculated at every iteration
> Often the most expensive part of the algorithm
> Need be as efficiently as possible
- Delta / partial evaluation
Approximate evaluation function, potentially good solutions fully
evaluated

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

Local Search: Design & Improve

» Evaluation function

- If possible, should lead the search

Avoid where many states return the same value
l.e. a plateau in the search space, the search has no knowledge
where it should proceed

79 80 78 79 79 80 79 56 68 76 80 79 72 74 69 74 41 41 68

80
5 & 3
11 2 A .
18 14128 15
60 <INl 13 - 36
45
24 46
42
17 24 35
40 45)
72
: 65
8 |57 & 57 2
22 54 54 L -
20 27 43 41 |41 “;"
! - {32 3
26 27 28 | 27
16 16
il Wl & 3 |
§ |

i 2 2 4 5 6 7 8 0O 11 12 12 14 15 16 17 18 19

Local Search: Design & Improve

Evaluation function

- Cater for some illegal solutions using constraints
Hard Constraints :
cannot be violated in a feasible solution
a large weighting: these illegal solutions have a high cost
Soft Constraints :

should, ideally, not be violated but, if they are, the
solution is still feasible

weighted depending importance
Can be dynamically changed as the algorithm progresses.

Allows hard constraints to be accepted at the start of the
algorithm but rejected later

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

CohhBERRRRRE
SUUUARRRARN

Local Search: Design & Improve

Initial solution
A random solution: improve
A solution that’s been heuristically built (e.g. for the TSP
problem, start with a greedy search)

Hybridisation
Combine two search algorithms
The primary search : a population based search
A local search is applied to move each individual to a local
optimum

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

Other Local Search Metaheuristics

Iterative Local Search

Guided Local Search

GRASP (Greedy Random Adaptive Search Procedure)
And many more

v v v Vv

» Software Tool
> Andrea Schaerf, Marco Cadoli and Maurizio Lenzerini. LOCAL++: A

C++ framework for local search algorithms. Software: Practice and
Experience, 30(3): 233-257, 2000

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016

