

2

 For a set of decision variables: X = (x1, x2, …., xn)
Maximises (or minimises) an objective function: f(X)
Subject to a set of constraints

Pictures from Mathworks.com

 For most of real world optimisation problems
◦ An exact model cannot be built easily
◦ Combinatorial explosion: no. of solutions grows exponentially with

the size of the problem

 Search algorithms
◦ Exact methods: IP, MIP
◦ Constructive heuristics
◦ Meta-heuristic algorithms

3

A

C

D

B

E

F

 Constructive Heuristics
◦ Simple minded greedy functions: iteratively build a reasonable

solution, one element at a time

 Meta-heuristics
◦ Single solution based (local search)

 Simulated Annealing, Tabu Search, Variable Neighbourhood Search,
etc.

◦ Population based
 Genetic algorithm, Memetic algorithm,

EDA, Ant Algorithms, Swarm
Intelligence, etc.

 Starts from initial (complete) solution
 Iteratively moves to a better neighborhood solution

 until a local optimum (no better neighborhood)

f(X)

X

local maximum

solution

global maximum

solution

()

Neighborhood of

solution

global maximum

value

x’

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Representation of the solution
◦ Solution encoding

 Evaluation function
◦ Guide the search

 Neighbourhood function
◦ An operator to change (move) a solution to other solutions

 Acceptance criterion
◦ First improvement, best improvement, best of

non-improving solutions

A

C

D

B

E

F

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Hill climbing / Steepest Descent
◦ “Run uphill / downhill and hope you find the top / bottom of the hills”

 Simulated annealing
◦ “Shake it up a lot and then slowly let it settle”

 Tabu search
◦ “Don’t look under the same lamp-post twice”

 Variable Neighbourhood Search
 “Let’s use different transportations i.e. fly / leap / walk, to explore”

 Etc.

 Population based approach
◦ Genetic algorithms: “survival of the fittest”

◦ Ant algorithms: “wander around a lot and leave a trail”

◦ Genetic programming: Learn to program

◦ Etc.

 NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Physical annealing process: Material is heated and slowly
cooled into a uniform structure

 The first SA algorithm: (Metropolis, 1953)
 SA applied to optimisation problems: (Kirkpatrick, 1982)

 Better moves are always accepted
 Worse moves may be accepted, depends on a probability

Kirkpatrick, S , Gelatt, C.D., Vecchi, M.P.

1983. Optimization by Simulated

Annealing. Science, 220(4598): 671-680.

 At temperature t, the probability of accepting a worse
solution:

P = exp(-|c|/t) > r

 c : change in the evaluation function
 r : a random number between 0 and 1
 t : the current temperature

 The probability of accepting a worse state is a function of
◦ the temperature t of the system
◦ the change c in the cost function

 The probability of accepting a worse state is a function of
◦ the temperature t of the system
◦ the change c in the cost function

 t decreases: the probability of accepting worse moves
decreases

 t = 0: no worse moves are accepted (i.e. greedy search)

Change Temp exp(-C/T) Change Temp exp(-C/T)

0.2 0.95 0.810 0.2 0.1 0.13583

0.4 0.95 0.656 0.4 0.1 0.018339

0.6 0.95 0.532 0.6 0.1 0.0024852

0.8 0.95 0.431 0.8 0.1 0.000335

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

For I = 1 to Iter do
 t = Schedule[I]
 If t = 0 then return Current
 Next = random neighbour of Current
 c = evaluate[Next] – evaluate[Current]
 if c > 0 then Current = Next
 else Current = Next with probability exp(-|c|/t)

 Implement SA : implement greedy search + modified

acceptance criteria exp-|c|/t

 Cooling Schedule is hidden in this algorithm: important!

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Starting Temperature

 Final Temperature

 Temperature Decrement

 Iterations at each temperature

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Starting Temperature
◦ hot enough: to allow almost all neighbourhood (else: greedy search)
◦ not be so hot: random search for sometime
◦ Estimate a suitable starting temperature:

 Reduce quickly to 60% of worse moves are accepted
 Use this as the starting temperature

 Final Temperature
◦ Usually 0, however in practise, not necessary
◦ t is low: accepting a worse move are almost the same as t = 0
◦ The stopping criteria: either be a suitably low t, or “frozen” at the

current t (i.e. no worse moves are being accepted)

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Temperature Decrement

◦ Enough iterations at each t, however computationally expensive
◦ Compromise

 Either: a large number of iterations at a few t’s, or
 A small number of iterations at many t’s, or
 A balance between the two

◦ Linear: t = t – x
◦ Geometric: t = t * a

 Experience: α = (0.8 and 0.99)
 The higher the value of α, the longer it will take

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Iterations at each temperature

◦ A constant number of iterations at each t, or
◦ One iteration at each t, but decrease t very slowly (Lundy 1986)

 t = t / (1 + βt)
 where β is a suitably small value

◦ An alternative: dynamically change the no. of iterations
 At higher t’s: less no. of iterations
 At lower t’s: a large no. of iterations, local optimum fully

exploited

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

exp(-|c|/t): took about one third of the computation time

 Approximates the exponential (Johnson, 1991)
P(c) = 1 – |c|/t

 Build a look-up table: values of |c|/t
 Speed up the algorithm: about a third with no significant

effect on solution quality

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

“The overall approach is to avoid entrapment in cycles by
forbidding or penalizing moves … in the next iteration to
points in the solution space previously visited (hence
tabu).”

Proposed independently by Glover (1986) and Hansen (1986)

 Accept the best one, even it’s low quality (worse move)
 Accepts worse solutions deterministically, to escape from

local optima

Glover, Fred W., Laguna, Manuel. Tabu Search, Springer, 1996

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Uses memory (tabu list) to improve decision making
◦ Short term memory: prevent revisiting previous solutions

 Tabu list: Records a limited no. of solution attributes (moves,
selections, assignments, etc.)

 Tabu tenure (length of tabu list): No. of iterations a move is
prevented
 FIFO, dynamic

◦ Long term memory: attributes of elite solutions
 Diversification: Discouraging attributes of elite solutions, to

diversify the search to other areas of solution space
 Intensification: Give priority to attributes of a set of elite solutions

 Aspiration criteria: accepting an improving solution even it’s
generated by a tabu move
◦ Similar to SA: always accepts better solutions, but accept worse ones

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

Current = initial solution

While not terminate

Next = the best neighbour of Current

If(not MoveTabu(TL, Next) or Aspiration(Next)) then

Current = Next

Update BestSolutionSeen

TL = Recency(TL + Current)

Endif

End-While

Return BestSolutionSeen

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Short term memory
◦ Prevent a list of t towns from being selected for a no. of iterations

 Long term memory
◦ Maintain a list of t towns in the last k best (worst) solutions

◦ Encourage (or discourage) their selections in future solutions

 Aspiration
◦ Moves in the tabu list

generate better solution:
accept that solution anyway

◦ Put it into tabu list

SA TS

No. of neighbours at
each move

Accept worse moves?
How?

Accept better moves?

Stopping conditions

1 n

Yes
by P = exp(-c/t)

Yes, the best neighbour
if it is not tabu-ed

Always Always (aspiration)

t = 0, or
At a low temperature, or
No improvement after
some iterations

Certain no. of
iterations, or
No improvement after
some iterations

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 In most local search: only one neighbourhood

 To escape from local optimum
◦ SA: move to worse neighbourhoods based on a probability using

cooling schedule

◦ TS: move to not tabued worse neighbourhoods

 VNS: systematically changes neighbourhood during search
◦ Nk, k = 1, 2, … kmax : the set of neighbourhood operators

◦ Nk(s): set of solutions in the kth neighbourhood of solution s

P. Hansen and N. Mladenovic, Variable neighbourhood search: Principles and
applications, EJOR 130: 449-467, 2001

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Fact 1. A local minimum w.r.t. one neighbourhood is not
necessary so for another

 Fact 2. A global minimum is a local minimum w.r.t. all
possible neighbourhood

 Fact 3. For many problems local minima w.r.t several
neighbourhoods are
relatively close to
each other

A

C

D

B

E

F

Talbi, Metaheuristics – From design to implementation,

Wiley, 2009

 Order of neighbourhoods

◦ Typically, order neighbourhoods from smallest to largest

◦ Forward VNS: start with k = 1 and increase k by one if no
better solution is found; otherwise set k  1

◦ Backward VNS: start with k = kmax and decrease k by one if no
better solution is found

◦ Extended version: parameters kmin and kstep; set k  kmin and

increase k by kstep if no better solution is found

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

Procedure Reduced VNS
Select {Nk}, k = 1, …,kmax, initial solution x, stopping condition
k  1

Repeat until k = kmax
 x’  RandomSolution(Nk(x))

if f(x’) < f(x) then
 x  x’
 k  1
else k  k + 1

End

 Same as basic VNS except: no LocalSearch is applied
 Only explores randomly different neighbourhoods
 Can be faster than standard local search

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Number and type of neighbourhoods to be used
 Order of their use in the search
 Strategy for changing the neighbourhoods
 Local search methods
 Stopping condition

 No need of sophisticated acceptance criteria to escape from

local optima
 Neighbourhoods: crucial for VNS; all solutions reachable!

 Exercise: Design a VNS for TSP

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Evaluation function

◦ Calculated at every iteration
◦ Often the most expensive part of the algorithm
◦ Need be as efficiently as possible

 Delta / partial evaluation
 Approximate evaluation function, potentially good solutions fully

evaluated

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Evaluation function

◦ If possible, should lead the search
 Avoid where many states return the same value

i.e. a plateau in the search space, the search has no knowledge
where it should proceed

 Evaluation function

◦ Cater for some illegal solutions using constraints
 Hard Constraints :

 cannot be violated in a feasible solution
 a large weighting: these illegal solutions have a high cost

 Soft Constraints :
 should, ideally, not be violated but, if they are, the

solution is still feasible
 weighted depending importance

 Can be dynamically changed as the algorithm progresses.
 Allows hard constraints to be accepted at the start of the

algorithm but rejected later

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Initial solution
◦ A random solution: improve
◦ A solution that’s been heuristically built (e.g. for the TSP

problem, start with a greedy search)

 Hybridisation
◦ Combine two search algorithms
◦ The primary search : a population based search
◦ A local search is applied to move each individual to a local

optimum

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Iterative Local Search

 Guided Local Search

 GRASP (Greedy Random Adaptive Search Procedure)

 And many more

 Software Tool
◦ Andrea Schaerf, Marco Cadoli and Maurizio Lenzerini. LOCAL++: A

C++ framework for local search algorithms. Software: Practice and
Experience, 30(3): 233–257, 2000

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

