Meta-heuristic Algorithms

Dr Rong Qu, Associate Professor **ASAP Group**, The University of Nottingham rong.qu@nottingham.ac.uk http://www.cs.nott.ac.uk/~pszrq

NATCOR – Heuristics and Approximate Algorithms Nottingham, April, 2016

Optimisation Problems

 For a set of decision variables: X = (x₁, x₂, ..., x_n) Maximises (or minimises) an objective function: f(X) Subject to a set of constraints

$$\begin{aligned} Ras(x) &= 20 + x_1^2 + x_2^2 - 10\left(\cos 2\pi x_1 + \cos 2\pi x_2\right). \quad F(\vec{x}) = -20 \cdot \exp\left(-0.2\sqrt{\frac{1}{n} \cdot \sum_{i=1}^n x_i^2}\right) - \exp\left(\frac{1}{n}\sum_{i=1}^n \cos(2\pi \cdot x_i)\right) + 20 + e \\ x_i \in [-5.12, 5.12] \qquad \qquad x_i \in [-30, 30] \end{aligned}$$

Combinatorial Optimisation Problems

- For most of real world optimisation problems
 - An exact model cannot be built easily
 - Combinatorial explosion: no. of solutions grows exponentially with the size of the problem
- Search algorithms
 - Exact methods: IP, MIP
 - Constructive heuristics
 - Meta-heuristic algorithms

Combinatorial Optimisation Problems

- Constructive Heuristics
 - Simple minded greedy functions: iteratively build a reasonable solution, one element at a time
- Meta-heuristics
 - Single solution based (local search)
 - Simulated Annealing, Tabu Search, Variable Neighbourhood Search, etc.
 - Population based
 - Genetic algorithm, Memetic algorithm, EDA, Ant Algorithms, Swarm Intelligence, etc.

Local Search

- Starts from initial (complete) solution
- Iteratively moves to a better neighborhood solution until a local optimum (no better neighborhood)

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

Local Search

- Representation of the solution
 Solution encoding
- Evaluation function
 - Guide the search

Neighbourhood function

- An operator to change (move) a solution to other solutions
- Acceptance criterion
 - First improvement, best improvement, best of non-improving solutions

Local Search

- Hill climbing / Steepest Descent
 - "Run uphill / downhill and hope you find the top / bottom of the hills"
- Simulated annealing
 - "Shake it up a lot and then slowly let it settle"
- Tabu search
 - "Don't look under the same lamp-post twice"
- Variable Neighbourhood Search
 - "Let's use different transportations i.e. fly / leap / walk, to explore"

Etc.

Ftc

- Population based approach
 - Genetic algorithms: "survival of the fittest"
 - Ant algorithms: "wander around a lot and leave a trail"
 - Genetic programming: Learn to program

- Physical annealing process: Material is heated and slowly cooled into a uniform structure
- The first SA algorithm: (Metropolis, 1953)
- SA applied to optimisation problems: (Kirkpatrick, 1982)
- Better moves are always accepted
- Worse moves may be accepted, depends on a probability

Kirkpatrick, S , Gelatt, C.D., Vecchi, M.P. 1983. Optimization by Simulated Annealing. Science, 220(4598): 671-680.

• At temperature *t*, the probability of accepting a worse solution:

 $\mathsf{P} = \exp^{(-|\mathsf{c}|/t)} > \mathsf{r}$

- *c* : change in the evaluation function
- r: a random number between 0 and 1
- *t* : the current temperature
- The probability of accepting a worse state is a function of
 - the temperature t of the system
 - the change c in the cost function

- The probability of accepting a worse state is a function of
 - the temperature t of the system
 - the change c in the cost function
- t decreases: the probability of accepting worse moves decreases
- t = 0: no worse moves are accepted (i.e. greedy search)

Change	Temp	exp ^(-C/T)	Change	Temp	exp ^(-C/T)
0.2	0.95	0.810	0.2	0.1	0.13583
0.4	0.95	0.656	0.4	0.1	0.018339
0.6	0.95	0.532	0.6	0.1	0.0024852
0.8	0.95	0.431	0.8	0.1	0.000335

For I = 1 to Iter do

- t = Schedule[I]
- **If** t = 0 then return Current

Next = random neighbour of Current
c = evaluate[Next] - evaluate[Current]

if c > 0 then Current = Next

else Current = Next with probability $exp^{(-|c|/t)}$

- Implement SA : implement greedy search + modified acceptance criteria exp^{-|c|/t}
- Cooling Schedule is *hidden* in this algorithm: important!

C(S)

Iterations

- Starting Temperature
- Final Temperature
- Temperature Decrement
- Iterations at each temperature

Starting Temperature

- *hot* enough: to allow *almost* all neighbourhood (else: greedy search)
- *not* be so hot: random search for sometime
- Estimate a suitable starting temperature:
 - Reduce quickly to 60% of worse moves are accepted
 - Use this as the starting temperature

Final Temperature

- Usually 0, however in practise, not necessary
- t is low: accepting a worse move are almost the same as t = 0
- The stopping criteria: either be a suitably low t, or "frozen" at the current t (i.e. no worse moves are being accepted)

Temperature Decrement

- Enough iterations at each t, however computationally expensive
- Compromise
 - Either: a large number of iterations at a few t's, or
 - A small number of iterations at many t's, or
 - A balance between the two
- Linear: t = t x
- Geometric: $t = t^*$ a
 - Experience: a = (0.8 and 0.99)
 - The higher the value of a, the longer it will take

Iterations at each temperature

- A constant number of iterations at each t, or
- One iteration at each t, but decrease t *very* slowly (Lundy 1986)
 - $t = t / (1 + \beta t)$
 - where β is a suitably small value
- An alternative: dynamically change the no. of iterations
 - At higher t's: less no. of iterations
 - At lower t's: a large no. of iterations, local optimum fully exploited

SA – Acceptance exp^(-|c|/t)

exp^(-|c|/t): took about one third of the computation time

Approximates the exponential (Johnson, 1991)

$$P(c) = 1 - |c|/t$$

- Build a look-up table: values of |c|/t
- Speed up the algorithm: about a third with no significant effect on solution quality

Tabu Search

"The overall approach is to avoid entrapment in cycles by forbidding or penalizing moves ... in the next iteration to points in the solution space previously visited (hence *tabu*)."

Proposed independently by Glover (1986) and Hansen (1986)

- Accept the best one, even it's low quality (worse move)
- Accepts worse solutions deterministically, to escape from local optima

Glover, Fred W., Laguna, Manuel. Tabu Search, Springer, 1996

Tabu Search

- Uses memory (tabu list) to improve decision making
 - Short term memory: prevent revisiting previous solutions
 - Tabu list: Records a limited no. of solution attributes (moves, selections, assignments, etc.)
 - Tabu tenure (length of tabu list): No. of iterations a move is prevented
 - FIFO, dynamic
 - Long term memory: attributes of elite solutions
 - Diversification: Discouraging attributes of elite solutions, to diversify the search to other areas of solution space
 - Intensification: Give priority to attributes of a set of elite solutions
- Aspiration criteria: accepting an improving solution even it's generated by a tabu move

Similar to SA: always accepts better solutions, but accept worse ones

Tabu Search

Current = initial solution

While not terminate

Next = the best neighbour of Current

If(not MoveTabu(TL, Next) or Aspiration(Next)) then

Current = Next

Update **BestSolutionSeen**

TL = Recency(TL + Current) Endif

End-While

Return BestSolutionSeen

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

Tabu Search – TSP Example

- Short term memory
 - Prevent a list of *t* towns from being selected for a no. of iterations
- Long term memory
 - Maintain a list of t towns in the last k best (worst) solutions
 - Encourage (or discourage) their selections in future solutions

Aspiration

- Moves in the tabu list generate better solution: accept that solution anyway
- Put it into tabu list

Tabu Search vs. Simulated Annealing

	SA	TS	
No. of neighbours at each move	1	n	
Accept worse moves? How?	Yes by $P = exp^{(-c/t)}$	Yes, the best neighbour if it is not tabu-ed	
Accept better moves?	Always	Always (aspiration)	
Stopping conditions	t = 0, or At a low temperature, or No improvement after some iterations	Certain no. of iterations, or No improvement after some iterations	

Variable Neighbourhood Search

- In most local search: only one neighbourhood
- To escape from local optimum
 - SA: move to worse neighbourhoods based on a probability using cooling schedule
 - TS: move to not tabued worse neighbourhoods

VNS: systematically changes neighbourhood during search

- N_{kr} $k = 1, 2, ..., k_{max}$: the set of neighbourhood operators
- $N_k(s)$: set of solutions in the k^{th} neighbourhood of solution s

P. Hansen and N. Mladenovic, Variable neighbourhood search: Principles and applications, EJOR 130: 449-467, 2001

Variable Neighbourhood Search

- Fact 1. A local minimum w.r.t. one neighbourhood is not necessary so for another
- Fact 2. A global minimum is a local minimum w.r.t. all possible neighbourhood
- Fact 3. For many problems local minima w.r.t several neighbourhoods are relatively close to each other C(S)

Iterations

Variable Neighborhood Search

Initialisation

Select the set of neighbourhood structures $\mathbf{N}_{\mathbf{k}}$

Find an initial solution x

Repeat until stopping condition is met

- Set K=1
- Repeat until k=k_{max}
 - 1. Shaking: Generate a random point X' in $N_k(x)$
 - 2. Local Search: x" is the obtained optimum
 - 3. Move or not:
 - If x'' is better than x then x=x'' and k=1
 - Otherwise k=k+1

Talbi, **Metaheuristics – From design to implementation**, Wiley, 2009

Variable Neighbourhood Search

- Order of neighbourhoods
 - Typically, order neighbourhoods from smallest to largest
 - Forward VNS: start with k = 1 and increase k by one if no better solution is found; otherwise set $k \leftarrow 1$
 - Backward VNS: start with $k = k_{max}$ and decrease k by one if no better solution is found
 - Extended version: parameters k_{min} and k_{step} ; set $k \leftarrow k_{min}$ and increase k by k_{step} if no better solution is found

Variants of VNS

Procedure Reduced VNS

 $\begin{array}{l} \textbf{Select } \{N_k\}, \ k = 1, \ ..., k_{max}, \ \text{initial solution } \textbf{x}, \ \text{stopping condition} \\ \textbf{k} \in 1 \\ \textbf{Repeat until } \textbf{k} = \textbf{k}_{max} \\ \textbf{x'} \in \textbf{RandomSolution}(\textbf{N}_k(\textbf{x})) \\ \text{if } f(\textbf{x'}) < f(\textbf{x}) \ \textbf{then} \\ & \textbf{x} \in \textbf{x'} \\ & \textbf{k} \in 1 \\ else \quad \textbf{k} \in \textbf{k} + 1 \end{array}$

End

- Same as basic VNS except: no LocalSearch is applied
- Only explores randomly different neighbourhoods
 - Can be faster than standard local search

Design VNS

- Number and type of neighbourhoods to be used
- Order of their use in the search
- Strategy for changing the neighbourhoods
- Local search methods
- Stopping condition
- No need of sophisticated acceptance criteria to escape from local optima
- Neighbourhoods: crucial for VNS; all solutions reachable!
- Exercise: Design a VNS for TSP

Evaluation function

- Calculated at every iteration
- Often the most expensive part of the algorithm
- Need be as efficiently as possible
 - Delta / partial evaluation
 - Approximate evaluation function, potentially good solutions fully evaluated

- Evaluation function
 - If possible, should lead the search
 - Avoid where many states return the same value

 a plateau in the search space, the search has no knowledge
 where it should proceed

Evaluation function

- Cater for some illegal solutions using constraints
 - Hard Constraints :
 - cannot be violated in a feasible solution
 - a large weighting: these illegal solutions have a high cost
 - Soft Constraints :
 - should, ideally, not be violated but, if they are, the solution is still feasible
 - weighted depending importance
 - Can be dynamically changed as the algorithm progresses.
 - Allows hard constraints to be accepted at the start of the algorithm but rejected later

Initial solution

- A random solution: improve
- A solution that's been heuristically built (e.g. for the TSP problem, start with a greedy search)

Hybridisation

- Combine two search algorithms
- The primary search : a population based search
- A local search is applied to move each individual to a local optimum

Other Local Search Metaheuristics

- Iterative Local Search
- Guided Local Search
- GRASP (Greedy Random Adaptive Search Procedure)
- And many more
- Software Tool
 - Andrea Schaerf, Marco Cadoli and Maurizio Lenzerini. LOCAL++: A C++ framework for local search algorithms. Software: Practice and Experience, 30(3): 233–257, 2000