

2

 For a set of decision variables: X = (x1, x2, …., xn)
Maximises (or minimises) an objective function: f(X)
Subject to a set of constraints

Pictures from Mathworks.com

 For most of real world optimisation problems
◦ An exact model cannot be built easily
◦ Combinatorial explosion: no. of solutions grows exponentially with

the size of the problem

 Search algorithms
◦ Exact methods: IP, MIP
◦ Constructive heuristics
◦ Meta-heuristic algorithms

3

A

C

D

B

E

F

 Constructive Heuristics
◦ Simple minded greedy functions: iteratively build a reasonable

solution, one element at a time

 Meta-heuristics
◦ Single solution based (local search)

 Simulated Annealing, Tabu Search, Variable Neighbourhood Search,
etc.

◦ Population based
 Genetic algorithm, Memetic algorithm,

EDA, Ant Algorithms, Swarm
Intelligence, etc.

 Starts from initial (complete) solution
 Iteratively moves to a better neighborhood solution

 until a local optimum (no better neighborhood)

f(X)

X

local maximum

solution

global maximum

solution

()

Neighborhood of

solution

global maximum

value

x’

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Representation of the solution
◦ Solution encoding

 Evaluation function
◦ Guide the search

 Neighbourhood function
◦ An operator to change (move) a solution to other solutions

 Acceptance criterion
◦ First improvement, best improvement, best of

non-improving solutions

A

C

D

B

E

F

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Hill climbing / Steepest Descent
◦ “Run uphill / downhill and hope you find the top / bottom of the hills”

 Simulated annealing
◦ “Shake it up a lot and then slowly let it settle”

 Tabu search
◦ “Don’t look under the same lamp-post twice”

 Variable Neighbourhood Search
 “Let’s use different transportations i.e. fly / leap / walk, to explore”

 Etc.

 Population based approach
◦ Genetic algorithms: “survival of the fittest”

◦ Ant algorithms: “wander around a lot and leave a trail”

◦ Genetic programming: Learn to program

◦ Etc.

 NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Physical annealing process: Material is heated and slowly
cooled into a uniform structure

 The first SA algorithm: (Metropolis, 1953)
 SA applied to optimisation problems: (Kirkpatrick, 1982)

 Better moves are always accepted
 Worse moves may be accepted, depends on a probability

Kirkpatrick, S , Gelatt, C.D., Vecchi, M.P.

1983. Optimization by Simulated

Annealing. Science, 220(4598): 671-680.

 At temperature t, the probability of accepting a worse
solution:

P = exp(-|c|/t) > r

 c : change in the evaluation function
 r : a random number between 0 and 1
 t : the current temperature

 The probability of accepting a worse state is a function of
◦ the temperature t of the system
◦ the change c in the cost function

 The probability of accepting a worse state is a function of
◦ the temperature t of the system
◦ the change c in the cost function

 t decreases: the probability of accepting worse moves
decreases

 t = 0: no worse moves are accepted (i.e. greedy search)

Change Temp exp(-C/T) Change Temp exp(-C/T)

0.2 0.95 0.810 0.2 0.1 0.13583

0.4 0.95 0.656 0.4 0.1 0.018339

0.6 0.95 0.532 0.6 0.1 0.0024852

0.8 0.95 0.431 0.8 0.1 0.000335

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

For I = 1 to Iter do
 t = Schedule[I]
 If t = 0 then return Current
 Next = random neighbour of Current
 c = evaluate[Next] – evaluate[Current]
 if c > 0 then Current = Next
 else Current = Next with probability exp(-|c|/t)

 Implement SA : implement greedy search + modified

acceptance criteria exp-|c|/t

 Cooling Schedule is hidden in this algorithm: important!

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Starting Temperature

 Final Temperature

 Temperature Decrement

 Iterations at each temperature

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Starting Temperature
◦ hot enough: to allow almost all neighbourhood (else: greedy search)
◦ not be so hot: random search for sometime
◦ Estimate a suitable starting temperature:

 Reduce quickly to 60% of worse moves are accepted
 Use this as the starting temperature

 Final Temperature
◦ Usually 0, however in practise, not necessary
◦ t is low: accepting a worse move are almost the same as t = 0
◦ The stopping criteria: either be a suitably low t, or “frozen” at the

current t (i.e. no worse moves are being accepted)

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Temperature Decrement

◦ Enough iterations at each t, however computationally expensive
◦ Compromise

 Either: a large number of iterations at a few t’s, or
 A small number of iterations at many t’s, or
 A balance between the two

◦ Linear: t = t – x
◦ Geometric: t = t * a

 Experience: α = (0.8 and 0.99)
 The higher the value of α, the longer it will take

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Iterations at each temperature

◦ A constant number of iterations at each t, or
◦ One iteration at each t, but decrease t very slowly (Lundy 1986)

 t = t / (1 + βt)
 where β is a suitably small value

◦ An alternative: dynamically change the no. of iterations
 At higher t’s: less no. of iterations
 At lower t’s: a large no. of iterations, local optimum fully

exploited

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

exp(-|c|/t): took about one third of the computation time

 Approximates the exponential (Johnson, 1991)
P(c) = 1 – |c|/t

 Build a look-up table: values of |c|/t
 Speed up the algorithm: about a third with no significant

effect on solution quality

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

“The overall approach is to avoid entrapment in cycles by
forbidding or penalizing moves … in the next iteration to
points in the solution space previously visited (hence
tabu).”

Proposed independently by Glover (1986) and Hansen (1986)

 Accept the best one, even it’s low quality (worse move)
 Accepts worse solutions deterministically, to escape from

local optima

Glover, Fred W., Laguna, Manuel. Tabu Search, Springer, 1996

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Uses memory (tabu list) to improve decision making
◦ Short term memory: prevent revisiting previous solutions

 Tabu list: Records a limited no. of solution attributes (moves,
selections, assignments, etc.)

 Tabu tenure (length of tabu list): No. of iterations a move is
prevented
 FIFO, dynamic

◦ Long term memory: attributes of elite solutions
 Diversification: Discouraging attributes of elite solutions, to

diversify the search to other areas of solution space
 Intensification: Give priority to attributes of a set of elite solutions

 Aspiration criteria: accepting an improving solution even it’s
generated by a tabu move
◦ Similar to SA: always accepts better solutions, but accept worse ones

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

Current = initial solution

While not terminate

Next = the best neighbour of Current

If(not MoveTabu(TL, Next) or Aspiration(Next)) then

Current = Next

Update BestSolutionSeen

TL = Recency(TL + Current)

Endif

End-While

Return BestSolutionSeen

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Short term memory
◦ Prevent a list of t towns from being selected for a no. of iterations

 Long term memory
◦ Maintain a list of t towns in the last k best (worst) solutions

◦ Encourage (or discourage) their selections in future solutions

 Aspiration
◦ Moves in the tabu list

generate better solution:
accept that solution anyway

◦ Put it into tabu list

SA TS

No. of neighbours at
each move

Accept worse moves?
How?

Accept better moves?

Stopping conditions

1 n

Yes
by P = exp(-c/t)

Yes, the best neighbour
if it is not tabu-ed

Always Always (aspiration)

t = 0, or
At a low temperature, or
No improvement after
some iterations

Certain no. of
iterations, or
No improvement after
some iterations

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 In most local search: only one neighbourhood

 To escape from local optimum
◦ SA: move to worse neighbourhoods based on a probability using

cooling schedule

◦ TS: move to not tabued worse neighbourhoods

 VNS: systematically changes neighbourhood during search
◦ Nk, k = 1, 2, … kmax : the set of neighbourhood operators

◦ Nk(s): set of solutions in the kth neighbourhood of solution s

P. Hansen and N. Mladenovic, Variable neighbourhood search: Principles and
applications, EJOR 130: 449-467, 2001

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Fact 1. A local minimum w.r.t. one neighbourhood is not
necessary so for another

 Fact 2. A global minimum is a local minimum w.r.t. all
possible neighbourhood

 Fact 3. For many problems local minima w.r.t several
neighbourhoods are
relatively close to
each other

A

C

D

B

E

F

Talbi, Metaheuristics – From design to implementation,

Wiley, 2009

 Order of neighbourhoods

◦ Typically, order neighbourhoods from smallest to largest

◦ Forward VNS: start with k = 1 and increase k by one if no
better solution is found; otherwise set k 1

◦ Backward VNS: start with k = kmax and decrease k by one if no
better solution is found

◦ Extended version: parameters kmin and kstep; set k kmin and

increase k by kstep if no better solution is found

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

Procedure Reduced VNS
Select {Nk}, k = 1, …,kmax, initial solution x, stopping condition
k 1

Repeat until k = kmax
 x’ RandomSolution(Nk(x))

if f(x’) < f(x) then
 x x’
 k 1
else k k + 1

End

 Same as basic VNS except: no LocalSearch is applied
 Only explores randomly different neighbourhoods
 Can be faster than standard local search

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Number and type of neighbourhoods to be used
 Order of their use in the search
 Strategy for changing the neighbourhoods
 Local search methods
 Stopping condition

 No need of sophisticated acceptance criteria to escape from

local optima
 Neighbourhoods: crucial for VNS; all solutions reachable!

 Exercise: Design a VNS for TSP

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Evaluation function

◦ Calculated at every iteration
◦ Often the most expensive part of the algorithm
◦ Need be as efficiently as possible

 Delta / partial evaluation
 Approximate evaluation function, potentially good solutions fully

evaluated

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Evaluation function

◦ If possible, should lead the search
 Avoid where many states return the same value

i.e. a plateau in the search space, the search has no knowledge
where it should proceed

 Evaluation function

◦ Cater for some illegal solutions using constraints
 Hard Constraints :

 cannot be violated in a feasible solution
 a large weighting: these illegal solutions have a high cost

 Soft Constraints :
 should, ideally, not be violated but, if they are, the

solution is still feasible
 weighted depending importance

 Can be dynamically changed as the algorithm progresses.
 Allows hard constraints to be accepted at the start of the

algorithm but rejected later

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Initial solution
◦ A random solution: improve
◦ A solution that’s been heuristically built (e.g. for the TSP

problem, start with a greedy search)

 Hybridisation
◦ Combine two search algorithms
◦ The primary search : a population based search
◦ A local search is applied to move each individual to a local

optimum

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

 Iterative Local Search

 Guided Local Search

 GRASP (Greedy Random Adaptive Search Procedure)

 And many more

 Software Tool
◦ Andrea Schaerf, Marco Cadoli and Maurizio Lenzerini. LOCAL++: A

C++ framework for local search algorithms. Software: Practice and
Experience, 30(3): 233–257, 2000

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016

