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 For a set of decision variables: X = (x1, x2, …., xn) 
Maximises (or minimises) an objective function: f(X) 
Subject to a set of constraints 

Pictures from Mathworks.com 



 For most of real world optimisation problems 
◦ An exact model cannot be built easily 
◦ Combinatorial explosion: no. of solutions grows exponentially with 

the size of the problem 

 Search algorithms 
◦ Exact methods: IP, MIP 
◦ Constructive heuristics 
◦ Meta-heuristic algorithms 
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 Constructive Heuristics 
◦ Simple minded greedy functions: iteratively build a reasonable 

solution, one element at a time  
 

 Meta-heuristics 
◦ Single solution based (local search) 

 Simulated Annealing, Tabu Search, Variable Neighbourhood Search, 
etc. 

◦ Population based 
 Genetic algorithm, Memetic algorithm, 

EDA, Ant Algorithms, Swarm 
Intelligence, etc. 



 Starts from initial (complete) solution 
 Iteratively moves to a better neighborhood solution 

 until a local optimum (no better neighborhood) 
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 Representation of the solution 
◦ Solution encoding 

 

 Evaluation function 
◦ Guide the search 

 

 Neighbourhood function 
◦ An operator to change (move) a solution to other solutions 

 

 Acceptance criterion 
◦ First improvement, best improvement, best of 

non-improving solutions 
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 Hill climbing / Steepest Descent 
◦ “Run uphill / downhill and hope you find the top / bottom of the hills” 

 Simulated annealing 
◦ “Shake it up a lot and then slowly let it settle” 

 Tabu search 
◦ “Don’t look under the same lamp-post twice” 

 Variable Neighbourhood Search 
 “Let’s use different transportations i.e. fly / leap / walk, to explore” 

 Etc. 

 Population based approach 
◦ Genetic algorithms: “survival of the fittest” 

◦ Ant algorithms: “wander around a lot and leave a trail” 

◦ Genetic programming: Learn to program 

◦ Etc. 
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 Physical annealing process: Material is heated and slowly 
cooled into a uniform structure 
 

 The first SA algorithm: (Metropolis, 1953) 
 SA applied to optimisation problems: (Kirkpatrick, 1982) 

 

 Better moves are always accepted 
 Worse moves may be accepted, depends on a probability 

 
 

Kirkpatrick, S , Gelatt, C.D., Vecchi, M.P. 

1983. Optimization by Simulated 

Annealing. Science, 220(4598): 671-680. 

 



 At  temperature t, the probability of accepting a worse 
solution: 

P = exp(-|c|/t) > r 
 

 c : change in the evaluation function 
 r : a random number between 0 and 1 
 t : the current temperature 

 

 The probability of accepting a worse state is a function of 
◦ the temperature t of the system 
◦ the change c in the cost function 



 The probability of accepting a worse state is a function of 
◦ the temperature t of the system 
◦ the change c in the cost function 

 t decreases: the probability of accepting worse moves 
decreases 

 t = 0: no worse moves are accepted (i.e. greedy search) 

Change Temp exp(-C/T)   Change Temp exp(-C/T) 

0.2 0.95 0.810   0.2  0.1 0.13583 

0.4 0.95 0.656   0.4 0.1 0.018339 

0.6 0.95 0.532   0.6 0.1 0.0024852 

0.8 0.95 0.431   0.8 0.1 0.000335 
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For I = 1 to Iter do 
 t = Schedule[I] 
 If t = 0 then return Current 
 Next = random neighbour of Current 
 c = evaluate[Next] – evaluate[Current] 
 if c > 0 then Current = Next 
 else Current = Next with probability exp(-|c|/t) 

 
 Implement SA : implement greedy search + modified 

acceptance criteria exp-|c|/t 

 Cooling Schedule is hidden in this algorithm: important! 
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 Starting Temperature 

 

 Final Temperature 

 

 Temperature Decrement 

 

 Iterations at each temperature 
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 Starting Temperature 
◦ hot enough: to allow almost all neighbourhood (else: greedy search) 
◦ not be so hot: random search for sometime 
◦ Estimate a suitable starting temperature: 

 Reduce quickly to 60% of worse moves are accepted 
 Use this as the starting temperature 

 

 Final Temperature 
◦ Usually 0, however in practise, not necessary 
◦ t is low: accepting a worse move are almost the same as t = 0 
◦ The stopping criteria: either be a suitably low t, or “frozen” at the 

current t (i.e. no worse moves are being accepted) 
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 Temperature Decrement 
 
◦ Enough iterations at each t, however computationally expensive 
◦ Compromise 

 Either: a large number of iterations at a few t’s, or 
 A small number of iterations at many t’s, or  
 A balance between the two 

◦ Linear: t = t  – x 
◦ Geometric: t = t * a 

 Experience: α = (0.8 and 0.99) 
 The higher the value of α, the longer it will take 
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 Iterations at each temperature 
 
◦ A constant number of iterations at each t, or 
◦ One iteration at each t, but decrease t very slowly (Lundy 1986) 

 t = t / (1 + βt) 
 where β is a suitably small value 

◦ An alternative: dynamically change the no. of iterations 
 At higher t’s: less no. of iterations 
 At lower t’s: a large no. of iterations, local optimum fully 

exploited 
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exp(-|c|/t): took about one third of the computation time  
 

 Approximates the exponential (Johnson, 1991) 
P(c) = 1 – |c|/t 

 Build a look-up table: values of |c|/t 
 Speed up the algorithm: about a third with no significant 

effect on solution quality 
 

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016 



“The overall approach is to avoid entrapment in cycles by 
forbidding or penalizing moves … in the next iteration to 
points in the solution space previously visited (hence 
tabu).” 

 
Proposed independently by Glover (1986) and Hansen (1986) 
 
 Accept the best one, even it’s low quality (worse move) 
 Accepts worse solutions deterministically, to escape from 

local optima 
 

Glover, Fred W., Laguna, Manuel. Tabu Search, Springer, 1996 
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 Uses memory (tabu list) to improve decision making 
◦ Short term memory: prevent revisiting previous solutions 

 Tabu list: Records a limited no. of solution attributes (moves, 
selections, assignments, etc.) 

 Tabu tenure (length of tabu list): No. of iterations a move is 
prevented 
 FIFO, dynamic 

◦ Long term memory: attributes of elite solutions 
 Diversification: Discouraging attributes of elite solutions, to 

diversify the search to other areas of solution space 
 Intensification: Give priority to attributes of a set of elite solutions 

 

 Aspiration criteria: accepting an improving solution even it’s 
generated by a tabu move 
◦ Similar to SA: always accepts better solutions, but accept worse ones 
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Current = initial solution 

While not terminate 

Next = the best neighbour of Current 

If(not MoveTabu(TL, Next) or Aspiration(Next)) then 

Current = Next 

Update BestSolutionSeen 

TL = Recency(TL + Current) 

Endif 

End-While 

Return BestSolutionSeen 
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 Short term memory 
◦ Prevent a list of t towns from being selected for a no. of iterations 

 

 Long term memory 
◦ Maintain a list of t towns in the last k best (worst) solutions 

◦ Encourage (or discourage) their selections in future solutions  

 

 Aspiration 
◦ Moves in the tabu list 

generate better solution: 
accept that solution anyway 

◦ Put it into tabu list 

 



SA TS 

No. of neighbours at 
each move 

Accept worse moves? 
How? 

Accept better moves? 

Stopping conditions 

1 n 

Yes 
by P = exp(-c/t) 

Yes, the best neighbour 
if it is not tabu-ed 

Always Always (aspiration) 

t = 0, or 
At a low temperature, or 
No improvement after 
some iterations 

Certain no. of 
iterations, or 
No improvement after 
some iterations 
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 In most local search: only one neighbourhood 

 

 To escape from local optimum 
◦ SA: move to worse neighbourhoods based on a probability using 

cooling schedule 

◦ TS: move to not tabued worse neighbourhoods 

 

 VNS: systematically changes neighbourhood during search 
◦ Nk, k = 1, 2, … kmax : the set of neighbourhood operators 

◦ Nk(s): set of solutions in the kth neighbourhood of solution s 

 
P. Hansen and N. Mladenovic, Variable neighbourhood search: Principles and 
applications, EJOR 130: 449-467, 2001 
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 Fact 1. A local minimum w.r.t. one neighbourhood is not 
necessary so for another 

 Fact 2. A global minimum is a local minimum w.r.t. all 
possible neighbourhood 

 Fact 3. For many problems local minima w.r.t several 
neighbourhoods are 
relatively close to 
each other 

A 

C 

D 

B 

E 

F 



Talbi, Metaheuristics – From design to implementation, 

Wiley, 2009 



 Order of neighbourhoods 
 

◦ Typically, order neighbourhoods from smallest to largest 
 

◦ Forward VNS: start with k = 1 and increase k by one if no 
better solution is found; otherwise set k  1 

◦ Backward VNS: start with k = kmax and decrease k by one if no 
better solution is found 

◦ Extended version: parameters kmin and kstep; set k  kmin and 

increase k by kstep if no better solution is found 

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016 



Procedure Reduced VNS 
Select  {Nk}, k = 1, …,kmax, initial solution x, stopping condition 
k  1 

Repeat until k = kmax 
 x’  RandomSolution(Nk(x)) 

if f(x’) < f(x) then 
 x  x’ 
 k  1 
else k  k + 1 

End 
 

 Same as basic VNS except: no LocalSearch is applied 
 Only explores randomly different neighbourhoods 
 Can be faster than standard local search 
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 Number and type of neighbourhoods to be used 
 Order of their use in the search 
 Strategy for changing the neighbourhoods 
 Local search methods 
 Stopping condition 

 
 No need of sophisticated acceptance criteria to escape from 

local optima 
 Neighbourhoods: crucial for VNS; all solutions reachable! 

 
 Exercise: Design a VNS for TSP 
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 Evaluation function 
 

◦ Calculated at every iteration 
◦ Often the most expensive part of the algorithm 
◦ Need be as efficiently as possible 

 Delta / partial evaluation 
 Approximate evaluation function, potentially good solutions fully 

evaluated 
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 Evaluation function 
 

◦ If possible, should lead the search 
 Avoid where many states return the same value 

i.e. a plateau in the search space, the search has no knowledge 
where it should proceed 



 Evaluation function 
 

◦ Cater for some illegal solutions using constraints 
 Hard Constraints : 

 cannot be violated in a feasible solution 
 a large weighting: these illegal solutions have a high cost 

 Soft Constraints : 
 should, ideally, not be violated but, if they are, the 

solution is still feasible 
 weighted depending importance 

 Can be dynamically changed as the algorithm progresses. 
 Allows hard constraints to be accepted at the start of the 

algorithm but rejected later 
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 Initial solution 
◦ A random solution: improve 
◦ A solution that’s been heuristically built (e.g. for the TSP 

problem, start with a greedy search) 
 

 Hybridisation 
◦ Combine two search algorithms 
◦ The primary search : a population based search 
◦ A local search is applied to move each individual to a local 

optimum 
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 Iterative Local Search 

 Guided Local Search 

 GRASP (Greedy Random Adaptive Search Procedure) 

 And many more 

 

 Software Tool 
◦ Andrea Schaerf, Marco Cadoli and Maurizio Lenzerini. LOCAL++: A 

C++ framework for local search algorithms. Software: Practice and 
Experience, 30(3): 233–257, 2000 
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