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 For a set of decision variables: X = (x1, x2, …., xn) 
Maximises (or minimises) an objective function: f(X) 
Subject to a set of constraints 

Pictures from Mathworks.com 



 For most of real world optimisation problems 
◦ An exact model cannot be built easily 
◦ Combinatorial explosion: no. of solutions grows exponentially with 

the size of the problem 

 Search algorithms 
◦ Exact methods: IP, MIP 
◦ Constructive heuristics 
◦ Meta-heuristic algorithms 
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 Constructive Heuristics 
◦ Simple minded greedy functions: iteratively build a reasonable 

solution, one element at a time  
 

 Meta-heuristics 
◦ Single solution based (local search) 

 Simulated Annealing, Tabu Search, Variable Neighbourhood Search, 
etc. 

◦ Population based 
 Genetic algorithm, Memetic algorithm, 

EDA, Ant Algorithms, Swarm 
Intelligence, etc. 



 Starts from initial (complete) solution 
 Iteratively moves to a better neighborhood solution 

 until a local optimum (no better neighborhood) 
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 Representation of the solution 
◦ Solution encoding 

 

 Evaluation function 
◦ Guide the search 

 

 Neighbourhood function 
◦ An operator to change (move) a solution to other solutions 

 

 Acceptance criterion 
◦ First improvement, best improvement, best of 

non-improving solutions 
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 Hill climbing / Steepest Descent 
◦ “Run uphill / downhill and hope you find the top / bottom of the hills” 

 Simulated annealing 
◦ “Shake it up a lot and then slowly let it settle” 

 Tabu search 
◦ “Don’t look under the same lamp-post twice” 

 Variable Neighbourhood Search 
 “Let’s use different transportations i.e. fly / leap / walk, to explore” 

 Etc. 

 Population based approach 
◦ Genetic algorithms: “survival of the fittest” 

◦ Ant algorithms: “wander around a lot and leave a trail” 

◦ Genetic programming: Learn to program 

◦ Etc. 
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 Physical annealing process: Material is heated and slowly 
cooled into a uniform structure 
 

 The first SA algorithm: (Metropolis, 1953) 
 SA applied to optimisation problems: (Kirkpatrick, 1982) 

 

 Better moves are always accepted 
 Worse moves may be accepted, depends on a probability 

 
 

Kirkpatrick, S , Gelatt, C.D., Vecchi, M.P. 

1983. Optimization by Simulated 

Annealing. Science, 220(4598): 671-680. 

 



 At  temperature t, the probability of accepting a worse 
solution: 

P = exp(-|c|/t) > r 
 

 c : change in the evaluation function 
 r : a random number between 0 and 1 
 t : the current temperature 

 

 The probability of accepting a worse state is a function of 
◦ the temperature t of the system 
◦ the change c in the cost function 



 The probability of accepting a worse state is a function of 
◦ the temperature t of the system 
◦ the change c in the cost function 

 t decreases: the probability of accepting worse moves 
decreases 

 t = 0: no worse moves are accepted (i.e. greedy search) 

Change Temp exp(-C/T)   Change Temp exp(-C/T) 

0.2 0.95 0.810   0.2  0.1 0.13583 

0.4 0.95 0.656   0.4 0.1 0.018339 

0.6 0.95 0.532   0.6 0.1 0.0024852 

0.8 0.95 0.431   0.8 0.1 0.000335 
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For I = 1 to Iter do 
 t = Schedule[I] 
 If t = 0 then return Current 
 Next = random neighbour of Current 
 c = evaluate[Next] – evaluate[Current] 
 if c > 0 then Current = Next 
 else Current = Next with probability exp(-|c|/t) 

 
 Implement SA : implement greedy search + modified 

acceptance criteria exp-|c|/t 

 Cooling Schedule is hidden in this algorithm: important! 
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 Starting Temperature 

 

 Final Temperature 

 

 Temperature Decrement 

 

 Iterations at each temperature 
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 Starting Temperature 
◦ hot enough: to allow almost all neighbourhood (else: greedy search) 
◦ not be so hot: random search for sometime 
◦ Estimate a suitable starting temperature: 

 Reduce quickly to 60% of worse moves are accepted 
 Use this as the starting temperature 

 

 Final Temperature 
◦ Usually 0, however in practise, not necessary 
◦ t is low: accepting a worse move are almost the same as t = 0 
◦ The stopping criteria: either be a suitably low t, or “frozen” at the 

current t (i.e. no worse moves are being accepted) 
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 Temperature Decrement 
 
◦ Enough iterations at each t, however computationally expensive 
◦ Compromise 

 Either: a large number of iterations at a few t’s, or 
 A small number of iterations at many t’s, or  
 A balance between the two 

◦ Linear: t = t  – x 
◦ Geometric: t = t * a 

 Experience: α = (0.8 and 0.99) 
 The higher the value of α, the longer it will take 
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 Iterations at each temperature 
 
◦ A constant number of iterations at each t, or 
◦ One iteration at each t, but decrease t very slowly (Lundy 1986) 

 t = t / (1 + βt) 
 where β is a suitably small value 

◦ An alternative: dynamically change the no. of iterations 
 At higher t’s: less no. of iterations 
 At lower t’s: a large no. of iterations, local optimum fully 

exploited 
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exp(-|c|/t): took about one third of the computation time  
 

 Approximates the exponential (Johnson, 1991) 
P(c) = 1 – |c|/t 

 Build a look-up table: values of |c|/t 
 Speed up the algorithm: about a third with no significant 

effect on solution quality 
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“The overall approach is to avoid entrapment in cycles by 
forbidding or penalizing moves … in the next iteration to 
points in the solution space previously visited (hence 
tabu).” 

 
Proposed independently by Glover (1986) and Hansen (1986) 
 
 Accept the best one, even it’s low quality (worse move) 
 Accepts worse solutions deterministically, to escape from 

local optima 
 

Glover, Fred W., Laguna, Manuel. Tabu Search, Springer, 1996 
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 Uses memory (tabu list) to improve decision making 
◦ Short term memory: prevent revisiting previous solutions 

 Tabu list: Records a limited no. of solution attributes (moves, 
selections, assignments, etc.) 

 Tabu tenure (length of tabu list): No. of iterations a move is 
prevented 
 FIFO, dynamic 

◦ Long term memory: attributes of elite solutions 
 Diversification: Discouraging attributes of elite solutions, to 

diversify the search to other areas of solution space 
 Intensification: Give priority to attributes of a set of elite solutions 

 

 Aspiration criteria: accepting an improving solution even it’s 
generated by a tabu move 
◦ Similar to SA: always accepts better solutions, but accept worse ones 
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Current = initial solution 

While not terminate 

Next = the best neighbour of Current 

If(not MoveTabu(TL, Next) or Aspiration(Next)) then 

Current = Next 

Update BestSolutionSeen 

TL = Recency(TL + Current) 

Endif 

End-While 

Return BestSolutionSeen 
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 Short term memory 
◦ Prevent a list of t towns from being selected for a no. of iterations 

 

 Long term memory 
◦ Maintain a list of t towns in the last k best (worst) solutions 

◦ Encourage (or discourage) their selections in future solutions  

 

 Aspiration 
◦ Moves in the tabu list 

generate better solution: 
accept that solution anyway 

◦ Put it into tabu list 

 



SA TS 

No. of neighbours at 
each move 

Accept worse moves? 
How? 

Accept better moves? 

Stopping conditions 

1 n 

Yes 
by P = exp(-c/t) 

Yes, the best neighbour 
if it is not tabu-ed 

Always Always (aspiration) 

t = 0, or 
At a low temperature, or 
No improvement after 
some iterations 

Certain no. of 
iterations, or 
No improvement after 
some iterations 
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 In most local search: only one neighbourhood 

 

 To escape from local optimum 
◦ SA: move to worse neighbourhoods based on a probability using 

cooling schedule 

◦ TS: move to not tabued worse neighbourhoods 

 

 VNS: systematically changes neighbourhood during search 
◦ Nk, k = 1, 2, … kmax : the set of neighbourhood operators 

◦ Nk(s): set of solutions in the kth neighbourhood of solution s 

 
P. Hansen and N. Mladenovic, Variable neighbourhood search: Principles and 
applications, EJOR 130: 449-467, 2001 
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 Fact 1. A local minimum w.r.t. one neighbourhood is not 
necessary so for another 

 Fact 2. A global minimum is a local minimum w.r.t. all 
possible neighbourhood 

 Fact 3. For many problems local minima w.r.t several 
neighbourhoods are 
relatively close to 
each other 
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Talbi, Metaheuristics – From design to implementation, 

Wiley, 2009 



 Order of neighbourhoods 
 

◦ Typically, order neighbourhoods from smallest to largest 
 

◦ Forward VNS: start with k = 1 and increase k by one if no 
better solution is found; otherwise set k  1 

◦ Backward VNS: start with k = kmax and decrease k by one if no 
better solution is found 

◦ Extended version: parameters kmin and kstep; set k  kmin and 

increase k by kstep if no better solution is found 
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Procedure Reduced VNS 
Select  {Nk}, k = 1, …,kmax, initial solution x, stopping condition 
k  1 

Repeat until k = kmax 
 x’  RandomSolution(Nk(x)) 

if f(x’) < f(x) then 
 x  x’ 
 k  1 
else k  k + 1 

End 
 

 Same as basic VNS except: no LocalSearch is applied 
 Only explores randomly different neighbourhoods 
 Can be faster than standard local search 
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 Number and type of neighbourhoods to be used 
 Order of their use in the search 
 Strategy for changing the neighbourhoods 
 Local search methods 
 Stopping condition 

 
 No need of sophisticated acceptance criteria to escape from 

local optima 
 Neighbourhoods: crucial for VNS; all solutions reachable! 

 
 Exercise: Design a VNS for TSP 
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 Evaluation function 
 

◦ Calculated at every iteration 
◦ Often the most expensive part of the algorithm 
◦ Need be as efficiently as possible 

 Delta / partial evaluation 
 Approximate evaluation function, potentially good solutions fully 

evaluated 
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 Evaluation function 
 

◦ If possible, should lead the search 
 Avoid where many states return the same value 

i.e. a plateau in the search space, the search has no knowledge 
where it should proceed 



 Evaluation function 
 

◦ Cater for some illegal solutions using constraints 
 Hard Constraints : 

 cannot be violated in a feasible solution 
 a large weighting: these illegal solutions have a high cost 

 Soft Constraints : 
 should, ideally, not be violated but, if they are, the 

solution is still feasible 
 weighted depending importance 

 Can be dynamically changed as the algorithm progresses. 
 Allows hard constraints to be accepted at the start of the 

algorithm but rejected later 
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 Initial solution 
◦ A random solution: improve 
◦ A solution that’s been heuristically built (e.g. for the TSP 

problem, start with a greedy search) 
 

 Hybridisation 
◦ Combine two search algorithms 
◦ The primary search : a population based search 
◦ A local search is applied to move each individual to a local 

optimum 
 

NATCOR – Heuristics and Approximate Algorithms, Nottingham, April 2016 



 Iterative Local Search 

 Guided Local Search 

 GRASP (Greedy Random Adaptive Search Procedure) 

 And many more 

 

 Software Tool 
◦ Andrea Schaerf, Marco Cadoli and Maurizio Lenzerini. LOCAL++: A 

C++ framework for local search algorithms. Software: Practice and 
Experience, 30(3): 233–257, 2000 
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