Variable Neighborhood Search

Hansen and Mladenovic, Variable neighborhood search: Principles and applications, *EJOR* 43 (2001)

Nur Evin Özdemirel - IE 505 Heuristic Search

Basic notions of VNS

- **■** Systematic change of the neighborhood in search
- ➡ Does not follow a single trajectory but explores increasingly distant neighbors of the incumbent solution
- ☐ In this way, keeps good (maybe optimal) variables in the incumbent and obtains promising neighbors
- Uses local search to get from these neighbors to local optima

Nur Evin Özdemirel - IE 505 Heuristic Search

Basic VNS algorithm

Initialization: Select a set of neighborhood structures N_k ($k=1,...,k_{max}$), find an initial solution x, set k=1, choose a stopping condition

Step 1 (shaking): Generate $x' \in N_k(x)$ at random

Step 2 (local search): Apply a local search method starting with x' to find local optimum x''

Step 3 (move or not): If x'' is better than the incumbent, then set x = x'' and k=1, otherwise set k=k+1 (or if $k=k_{max}$ set k=1); go back to Step 1

Nur Evin Özdemirel - IE 505 Heuristic Search

3

Basic VNS algorithm (cont.)

- **■** Basic VNS is a random descent, first improvement method
- \blacksquare In Step 1, x' is generated at random to avoid cycling
- \blacksquare Successive N_k are often nested
- In Step 3, if incumbent is changed then start over with N_1 , otherwise continue search in N_{k+1} starting with the local optimum of N_k

Nur Evin Özdemirel - IE 505 Heuristic Search

Variable neighborhood descent

Initialization: same as before

Step 1: Find the best $x' \in N_k(x)$

Step 2: If x' is better than x, then set x=x', otherwise set k=k+1; go back to Step 1

- ★ Meaningful as local optimum of one neighborhood is not necessarily one in another

Nur Evin Özdemirel - IE 505 Heuristic Search

Variants of the basic VNS

- \blacksquare In Step 3, still set x = x'' with some probability when x'' is worse than the incumbent (descent-ascent as in SA)
- **■** In Step 1, generate a solution from each of the k_{max} neighborhoods and move to the best of them (best improvement as in variable depth search)
- \blacksquare In Step 1, choose the best of l randomly generated solutions from N_k

Nur Evin Özdemirel - IE 505 Heuristic Search

Variants of the basic VNS (cont.)

- **■** In Step 3, set $k=k_{min}$ instead of k=1, set $k=k_{step}$ instead of k=k+1
- \blacksquare Choosing k_{min} and k_{step} large implies diversification, reverse intensification (assuming neighborhoods are nested)

Nur Evin Özdemirel - IE 505 Heuristic Search

-

VNS decisions

- Number and types of neighborhoods to be used
- **♯** Order of their use in the search
- **■** Strategy for changing the neighborhoods
- **■** Local search method
- **♯** Stopping condition

Nur Evin Özdemirel - IE 505 Heuristic Search

VNS for TSP

■ VNS-1

- Neighborhood definition is k-opt where k_{max} =n, i.e. $N_k(x)$ is the set of solutions having k edges different from x
- Local search method used in Step 2 is 2-opt

■ VNS-2

- Neighborhood definition is the same
- Local search method is 2-opt on (1-r)% NN candidate subgraph; in the outer loop of 2-opt, link (i, j) is not deleted if j is not among NNs of i (long edges are considered for deletion when selecting points from N_k)

Nur Evin Özdemirel - IE 505 Heuristic Search

(

Results for TSP

TSP: Average results for random Euclidean problems over 100 trials for n = 100, ..., 500 and 10 trials for $n = 600, ..., 1000^a$

n	Best value	found		% Improve	ement over 2-opt	CPU times	S	
	2-орт	VNS-1	VNS-2	VNS-1	VNS-2	2-орт	VNS-1	VNS-2
100	825.69	817.55	811.95	0.99	1.66	0.25	0.18	0.17
200	1156.98	1143.19	1132.63	1.19	2.10	3.88	3.21	2.82
300	1409.24	1398.16	1376.76	0.79	2.30	12.12	10.29	9.35
400	1623.60	1602.59	1577.42	1.29	2.84	46.13	40.03	34.37
500	1812.08	1794.59	1756.26	0.96	3.07	110.64	99.57	91.00
600	1991.56	1959.76	1925.51	0.97	3.32	204.60	191.85	173.07
700	2134.86	2120.59	2089.33	0.67	2.13	347.77	307.93	259.06
800	2279.18	2242.11	2190.83	1.63	3.88	539.94	480.50	462.23
900	2547.43	2399.52	2342.01	5.81	8.06	699.33	656.96	624.74
1000	2918.10	2555.56	2483.95	12.42	14.88	891.61	844.88	792.88
Average	1869.87	1803.36	1768.67	2.73	4.43	285.63	263.54	244.97

^a Computing times in seconds CPU on a SUN SPARC 10, 135.5 Mips (as all other results in this paper).

2-opt solution is best of two independent trials VNS stopping condition is CPU time for two 2-opt trials

Nur Evin Özdemirel - IE 505 Heuristic Search

Alternative VNS for TSP

- GENIUS, which is based on a sophisticated node deletion/insertion procedure, defines neighborhood as the *p* cities closest to the city under consideration for deletion/insertion
- VNS with the same neighborhood definition gives 0.75% average improvement over GENIUS in similar CPU time

Nur Evin Özdemirel - IE 505 Heuristic Search

1

VNS for *p*-median

- □ P-median problem: Given m discrete locations, locate p (uncapacitated) facilities that will serve n customers (with known locations) so as to minimize total distance from customers to facilities.
- $\blacksquare N_k(x)$ is the set of solutions having k facilities located in different locations than x, where $k_{max} = p$

Nur Evin Özdemirel - IE 505 Heuristic Search

Results for *p*-median

Table 2
PM: Results for test problems from [59]; maximum time allowed for CSTS [51] and VNS is set to be 30 times those of FI; the best solution found in 50 trials of FI, CSTS and VNS are reported^a

n	p	Best known	% Erro	r (deviation	on from b	est known)		CPU time			
			FI	VNS	HC	CSTS	TS	FI	VNS	CSTS	TS
200	10	48912	1.21	0.00	0.00	0.02	0.68	5.2	80.3	59.1	381.9
	15	31153	1.29	0.00	0.00	0.00	2.80	7.5	121.2	118.9	401.1
	20	23323	1.96	0.00	0.65	0.00	0.74	9.6	161.6	163.2	416.6
300	10	82664	3.58	0.00	0.00	1.08	0.47	12.3	248.2	179.2	1241.0
	15	52685	4.47	0.00	0.17	0.50	1.98	19.4	373.3	311.8	1321.6
	20	38244	3.34	0.00	1.35	0.72	2.49	24.4	475.8	467.0	1378.3
400	10	123464	0.19	0.00	0.00	0.12	3.79	24.5	463.4	361.3	2910.0
	15	79872	5.20	0.00	0.75	2.50	5.15	32.0	631.5	463.1	3096.8
	20	58459	7.08	0.46	0.00	0.92	1.17	45.4	958.6	653.3	3218.3
500	10	150112	2.03	0.00	0.00	0.14	1.52	40.6	864.9	474.3	9732.
	15	97624	3.54	0.00	0.00	1.55	0.79	54.7	1164.2	887.2	9731.
	20	72856	4.86	0.00	0.41	1.46	0.41	74.5	1593.4	1350.0	9748.
Average			3.23	0.04	0.27	0.75	1.83	29.2	594.7	457.4	3631.:

^a CPU times for HC method were not available to us.

FI: fast interchange descent, HC: heuristic concentration, TS: tabu search, CSTS: chain substitution TS

Nur Evin Özdemirel - IE 505 Heuristic Search

11

VNS for multi-source Weber

- Multi-source Weber problem: Continuous counterpart of *p*-median, i.e. *p* facilities can be located anywhere on the plane
- ☐ Choice of neighborhood is crucial; moving facilities is more effective than reassigning customers to facilities
- ➡ Neighborhood structure: known customer locations are also considered for facilities

Nur Evin Özdemirel - IE 505 Heuristic Search

Results for multi-source Weber

- Various heuristics were compared with equivalent CPU times
- On a series of 20 problems with 1060 customers, average deviation from best known solution is
 - 0.02% for the best of four VNS variants
 - 0.13% for the best of three TS variants
 - 1.27% for a GA
 - 20% or more for some well known heuristics

Nur Evin Özdemirel - IE 505 Heuristic Search

1.5

VNS for minimum sum-of-squares clustering

- ➡ Minimum sum-of-squares clustering problem:
 Partition n objects each in q-dimensional
 Euclidean space into m clusters such that sum of squared distances from each entity to the centroid of its cluster is minimum
- **■** K-means
 - Given an initial partition, try to assign object *j* in cluster *l* to each of the other *i* clusters
 - Neighborhood is defined by all possible i and j pairs
 - Find best neighbor and move if better than the current

Nur Evin Özdemirel - IE 505 Heuristic Search

VNS for minimum sum-ofsquares clustering (cont.)

- □ H-means: similar to Cooper's alternating heuristic for Weber problem (solve location and allocation problems alternatingly until convergence)
- **■** J-means
 - Centroid of cluster *i* is relocated at some object
 - This correnponds to reallocation of all objects in that cluster and is called a jump (hence the name J-means)
 - Solution obtained with the jump neighborhood can be improved by H-means and/or K-means

Nur Evin Özdemirel - IE 505 Heuristic Search

11

VNS for minimum sum-of-squares clustering (cont.)

- **VNS-1**
 - Uses K-means neighborhoods with $k_{max}=m$
 - Uses H+K-means for local search in Step 2 of the basic VNS algorithm
- **VNS-2**
 - Uses jump (centroid relocation) neighborhood with $k_{max}=m$
 - Uses J+H+K-means for local search in Step 2

Nur Evin Özdemirel - IE 505 Heuristic Search

Results for minimum sum-ofsquares clustering

m	Best found	% Deviation from best found										
		K-MEANS		H-MEANS		H+K-MEANS		VNS-1		VNS-2		
		Av.	Best	Av.	Best	Av.	Best	Av.	Best	Av.	Best	
10	1754840264.9	0.19	0.19	0.01	0.00	0.01	0.00	0.14	0.00	0.14	0.04	
20	791925963.7	2.89	0.00	1.87	1.29	1.31	0.46	3.50	1.84	0.74	0.01	
30	482302357.1	9.34	6.68	11.77	9.01	8.20	5.79	10.64	5.16	0.86	0.00	
40	342844809.0	15.50	12.04	20.01	15.28	16.86	11.53	15.95	9.64	0.81	0.00	
50	256892529.0	27.16	24.57	35.60	30.59	28.66	17.14	29.95	13.50	1.42	0.00	
60	199151542.6	35.79	32.53	44.59	33.56	36.21	30.00	35.19	20.50	0.59	0.00	
70	159781533.1	44.28	33.08	56.63	47.90	47.39	38.89	43.85	25.59	0.78	0.00	
80	130038918.6	53.15	46.64	62.34	50.77	56.69	43.98	51.08	35.07	0.75	0.00	
90	111322621.7	56.12	48.94	63.94	51.38	54.40	48.38	44.94	28.17	0.73	0.00	
100	97352045.7	60.41	54.74	46.21	46.21	35.95	35.95	42.99	28.00	1.16	0.00	
110	86287804.2	60.69	52.78	59.92	49.73	41.44	40.79	43.97	23.76	1.34	0.00	
120	76380389.5	62.90	54.00	62.32	52.66	48.96	41.28	38.58	33.56	1.02	0.00	
130	68417681.6	65.91	50.73	54.66	38.95	42.34	24.64	38.46	26.30	0.67	0.00	
140	61727504.5	62.16	49.82	53.05	45.51	36.00	36.00	30.85	22.04	1.43	0.00	
150	56679822.6	66.06	55.05	47.82	40.74	33.43	26.88	25.41	20.05	1.34	0.00	
160	52210995.2	59.37	53.16	41.74	34.88	30.85	25.61	25.83	19.32	0.70	0.00	
		42.62	25.02	41.40	24.20	22.42	26.71	20.00	10.52	0.00	0.00	

Multi-start versions of K-means, H-means, H+K-means Equivalent CPU times

Nur Evin Özdemirel - IE 505 Heuristic Search

19

VNS for bilinear programming

- **♯** Bilinear programming problem
 - \blacksquare Has three sets of variables x, y, z
 - When all y's are fixed, it becomes a LP in x and z
 - \blacksquare When all z's are fixed, it becomes a LP in x and y

$$\begin{aligned} & \min \quad c_0^{\mathsf{T}} x + d_0^{\mathsf{T}} y + e_0^{\mathsf{T}} z + y^{\mathsf{T}} C_0 z + c_0 \\ & \text{s.t.} \quad c_i^{\mathsf{T}} x + d_i^{\mathsf{T}} y + e_i^{\mathsf{T}} z \leqslant b_i, \quad i = 1, \dots, m_1, \\ & c_i^{\mathsf{T}} x + d_i^{\mathsf{T}} y + e_i^{\mathsf{T}} z + y^{\mathsf{T}} C_i z \leqslant b_i, \\ & i = m_1 + 1, \dots, m, \\ & x, y, z \geqslant 0. \end{aligned}$$

Nur Evin Özdemirel - IE 505 Heuristic Search

VNS for bilinear programming (cont)

- ♯ Local search ALTernate in Step 2 of the basic VNS
 - Step 1: Choose values of z (or y) variables
 - Step 2: Solve LP1 in x and y (or in x and z)
 - Step 3: For y (or z) found in Step 2, solve LP2 in x and z (or in x and y)
 - Step 4: If convergence is not reached within given tolerance, return to Step 2
- Neighborhood $N_k(x, y, z)$ for VNS corresponds to k pivots of the LP in x and y or in x and z, for $k=1,...,k_{max}$

Nur Evin Özdemirel - IE 505 Heuristic Search

Extensions: RVNS

- RVNS: Reduced VNS
- ♯ Local search in Step 2 is dropped to save time
- ☐ In Step 1, random solutions are generated from increasingly far neighborhoods of the incumbent
- **■** In Step 3, move iff the new solution is better
- \blacksquare For large *p*-median instances with 3038 customers
 - RVNS has the same solution quality as FI and uses 18 times less CPU time
 - RVNS is 0.53% worse than the basic VNS

Nur Evin Özdemirel - IE 505 Heuristic Search

2

Extensions: RVNS (cont.)

p	Objective v	alues			CPU tim	e		% Error (dev. from basic VNS		
	VNS	FI	RVNS	VNDS	FI	RVNS	VNDS	FI	RVNS	VNDS
50	507809.5	510330.2	510216.4	507655.2	612.9	60.7	311.1	0.50	0.47	-0.03
100	354488.7	356005.1	356666.3	353255.2	1040.7	132.4	885.8	0.43	0.61	-0.35
150	281911.9	284159.0	283024.6	281772.1	1459.2	128.5	1432.4	0.80	0.39	-0.05
200	239086.4	240646.2	241355.6	238623.0	1943.6	107.6	1796.8	0.65	0.95	-0.19
250	209718.0	210612.9	210727.7	209343.3	2395.6	150.3	2189.7	0.43	0.48	-0.18
300	188142.3	189467.5	188709.3	187807.1	2583.4	130.6	1471.7	0.70	0.30	-0.18
350	171726.8	172668.5	172388.5	171009.3	2804.3	153.1	2270.3	0.55	0.39	-0.42
400	157910.1	158549.5	158805.0	157079.7	4083.3	158.7	3670.9	0.40	0.57	-0.53
450	146087.8	146727.2	147062.0	145449.0	4223.8	179.5	1652.7	0.44	0.67	-0.44
500	136081.7	136680.5	136665.0	135468.0	4649.3	209.7	2599.8	0.44	0.43	-0.45

FI: fast interchange descent Basic VNS uses five times the CPU time of FI

Nur Evin Özdemirel - IE 505 Heuristic Search

Extensions: VNDS

- VNDS: VNS is combined with decomposition
- $rightharpoonup N_k(x)$: all but k variables of solution x are fixed, choose these k variables at random in Step 1
- **■** Local search in Step 2: solve a *k*-dimensional subproblem in the space of unfixed variables
- Step 3 is the same as in the basic VNS
- □ Basic VNS can be used as the local search heuristic (two level recursive VNS)

Nur Evin Özdemirel - IE 505 Heuristic Search

24

Extensions: VNDS (cont.)

- \blacksquare May return to k=1 when maximum size of or time allocated for the subproblem exceeds a limit
- \blacksquare For large *p*-median instances with 3038 customers
 - VNDS outperforms FI in similar CPU times
 - VNDS is 0.28% better than the basic VNS and uses five times less CPU time

Nur Evin Özdemirel - IE 505 Heuristic Search

Extensions: VNDS (cont.) Table 5 Results for PM problem with 3038 users; methods: VNS – basic VNS; FI; RVNS; VNDS

p	Objective v	alues	CPU time			% Error (dev. from basic VNS				
	VNS	FI	RVNS	VNDS	FI	RVNS	VNDS	FI	RVNS	VNDS
50	507809.5	510330.2	510216.4	507655.2	612.9	60.7	311.1	0.50	0.47	-0.03
100	354488.7	356005.1	356666.3	353255.2	1040.7	132.4	885.8	0.43	0.61	-0.35
150	281911.9	284159.0	283024.6	281772.1	1459.2	128.5	1432.4	0.80	0.39	-0.05
200	239086.4	240646.2	241355.6	238623.0	1943.6	107.6	1796.8	0.65	0.95	-0.19
250	209718.0	210612.9	210727.7	209343.3	2395.6	150.3	2189.7	0.43	0.48	-0.18
300	188142.3	189467.5	188709.3	187807.1	2583.4	130.6	1471.7	0.70	0.30	-0.18
350	171726.8	172668.5	172388.5	171009.3	2804.3	153.1	2270.3	0.55	0.39	-0.42
400	157910.1	158549.5	158805.0	157079.7	4083.3	158.7	3670.9	0.40	0.57	-0.53
450	146087.8	146727.2	147062.0	145449.0	4223.8	179.5	1652.7	0.44	0.67	-0.44
500	136081.7	136680.5	136665.0	135468.0	4649.3	209.7	2599.8	0.44	0.43	-0.45
Aver	age				2579.6	141.1	1828.12	0.53	0.53	-0.28

FI: fast interchange descent Basic VNS uses five times the CPU time of FI

Nur Evin Özdemirel - IE 505 Heuristic Search

2

Extensions: SVNS

- **♯** SVNS: Accounts for topology of local optima (valleys and mountains)
- Steps 1 and 2 are the same as in the basic VNS
- \blacksquare For the move decision in Step 3, instead of the objective function, use an evaluation function taking also into account distance ρ of x'' from x

Step 3 (improve or not): If $f(x'') < f(x_{best})$, set $x_{best} = x''$ Step 4 (move or not): If $f(x'') - \alpha \rho(x, x'') < f(x)$, set x = x''and k = 1, otherwise set k = k + 1; go back to Step 1

Nur Evin Özdemirel - IE 505 Heuristic Search

Conclusions VNS has many desirable features of a metaheuristic: Simple and largely applicable Coherent: steps follow naturally from principles, not a hybrid Efficient and effective: very good solution quality in moderate CPU time Robust: performs well for various problems

■ User friendly: easy to understand and implement

♯ Innovative: allows development of variations/extensions

Nur Evin Özdemirel - IE 505 Heuristic Search