
Introduction to Homotopy Type Theory

Lecture notes for a course at EWSCS 2017

Thorsten Altenkirch

March 5, 2017

1 What is this course about?

To explain what Homotopy Type Theory is, I will first talk about Type Theory
and then explain what is special about Homotopy Type Theory.

The word type theory has at least two meanings:

• The theory of types in programming language

• Martin-Löf’s Type Theory as a constructive foundation of Mathematics

We will be mainly concerned with the latter (which is emphasised by capitalising
it), even though there are interactions with the design of programming languages
as well.

Type Theory is the base of a number of computer systems used as the base
of interactive proof systems and very advanced (functional) programming lan-
guage. Here is an incomplete list:

• NuPRL

• Coq

• Agda

• Idris

• Cubical

NuPRL is based on a di↵erent version of Type Theory than the others, this is
now called Computational Type Theory. Coq is maybe now the system most used
in formal Mathematics and has been used for some impressive developments,
including a formal proof of the Four Colour Theorem and the verification of an
optimising C compiler. Agda is a sort of a twitter it can be used as a interactive
proof assistant or as a dependently typed programming language. Idris goes
further by addressing more pragmatic concerns when using Type Theory for
programming. Cubical is a very new system and more a proof of concept but it
is the only one (so far) that actually implements Homotopy Type Theory.

1

One way to introduce Type Theory is to pick one system (I usually pick
Agda) and then learn Type Theory by doing it. While this is a good way
to approach this subject, and do I recommend to play with a system I want to
concentrate more on the conceptual issues and then I find that having to explain
the intricacies of a particular system can be a bit of a distraction. Hence this
course will be a paper based introduction to Type Theory.

This course can be viewed as a taster of the book on Homotopy Type Theory
which was the output of a special year at the Institute for Advanced Study in
Princeton. However, a few things have happened since the book was written
(e.g. the construction of cubical) and I will mention them where appropriate.

2 Type Theory vs Set Theory

I view Type Theory in the first place as a intuitive foundation of Mathematics.
This is similar to how most Mathematicians use Set Theory: the have an intu-
itive idea what sets are but they don’t usually refer back to the axioms of Set
Theory. This is sometimes called naive Set Theory and similar what I am doing
here can be called naive Type Theory.

In Set Theory we write 3 2 N to express that 3 is an element of the set of
natural numbers. In Type Theory we write 3 : N to express that 3 is an element
of the type of natural numbers. While this looks superficially similar, there are
important di↵erences:

• While 3 2 N is a proposition, 3 : N is a judgement, that is a piece of static
information.

• In Type Theory every object and every expression has a (unique) type
which is statically determined. 1

• Hence it doesn’t make any sense to use a : A as a proposition.

• This is similar to the distinction between statically and dynamically typed
programming languages. While in dynamically typed languages there are
runtime functions to check the type of an object this doesn’t make sense
in statically typed languages.

• In Set Theory we define P ✓ Q as 8x.x 2 P ! x 2 Q. We can’t do this
in Type Theory because x 2 P is not a proposition.

• Also set theoretic operations like [or \ are not operations on types.
However, they can be defined as operations on predicates, aka subsets, of
a given type. ✓ can be defined as a predicate on such subsets.

• Type Theory is extensional in the sense that we can’t talk about details
of encodings.

1
We are not considering subtyping here, which can be understood as a notational device

allowing the omission of implicit coercions.

2

• This is di↵erent in Set Theory where we can ask wether N \ Bool = ;?
Or wether 2 2 3? The answer to these questions depends on the choice of
representation of these objects and sets.

Apart from the judgement a : A there is also the judgement a ⌘
A

b which
means that a, b : A are definitionally equal. We write definitions using :⌘, e.g.
we can define n : N as 3 by writing n :⌘ 3. As for a : A definitional equality is
a static property which can be determined statically and hence which doesn’t
make sense as a proposition. We will later introduce a =

A

b, propositional
equality which can be used in propositions.

While Type Theory is in some sense more restrictive than Set Theory, this
does pay o↵. Because we cannot talk about intensional aspects, i.e. implementa-
tion details, we can identify objects which have the same extensional behaviour.
This is reflected in the univalence axiom, which identifies extensionally equiva-
lent types (such as unary and binary natural numbers).

Another important di↵erence between Set Theory and Type Theory is the
way propositions are treated: Set Theory is formulated using predicate logic
which relies on the notion of truth. Type Theory is self-contained and doesn’t
refer to truth but to evidence. Using the propositions-as-types translation (also
called the Curry-Howard equivalence) we can assign to any proposition P the
type of its evidence [[P]] using the following table:

[[P =) Q]] ⌘ [[P]] ! [[Q]]

[[P ^Q]] ⌘ [[P]]⇥ [[Q]]

[[True]] ⌘ 1

[[P _Q]] ⌘ [[P]] + [[Q]]

[[False]] ⌘ 0

[[8x : A.P]] ⌘ ⇧x : A.[[P]]

[[9x : A.P]] ⌘ ⌃x : A.[[P]]

0 is the empty type, 1 is the type with exactly on element and + is the
sum or disjoint union of types. ! (function type) and ⇥ should be familiar but
we will revisit all of them from a type theoretic perspective. ⇧ and ⌃ are less
familiar in Set Theory and we will have a look at them later.

We are using a typed predicate logic here. ¬P is defined as P =) False.
Logical equivalence P , Q is defined as (P =) Q) ^ (Q =) P). Careful,
equivalence such as ¬(P ^Q) , ¬P _ ¬Q or ¬(8x : A.P) , 9x : A.¬P do not
hold in Type Theory.

Later we will see a refinement of the proposition as types translation, which
changes the translation of P _Q and 9x : A.P .

3

3 Non-dependent types

3.1 Universes

To get started we have to say what a type is. We could achieve this by intro-
ducing another judgement but instead I am going to use universes. A universe
is a type of types. For example to say that N is a type, I write N : Type where
Type is a universe.

But what is the type of Type? Do we have Type : Type? It is well known
that this doesn’t work in Set Theory due to Russell’s paradox (the set of all
sets which does not contain itself). However, in Type Theory a : A is not a
proposition, hence it is not immediately clear wether the paradox still works.

However, it is possible to encode Russell’s paradox in a Type Theory with
Type : Type by using trees which can branch over any type. In this theory
we can construct a tree of all trees which don’t have themself as immediate
subtree. This tree is a subtree of itself i↵ it isn’t which enables us to derive a
contradiction.

To avoid Russell’s paradox we introduce a hierarchy of universes

Type0 : Type1 : Type2 : . . .

and we decree that any type A : Type

i

can be lifted to a type A

+ : Type

i+1.
Being explicit about universe levels can be quite annoying hence we are going to
ignore them most of the time but try to make sure that we don’t use universes
in a cyclic way. That is we write Type as a metavariable for Type

i

and assume
that all the levels are the same unless stated explicitly.

3.2 Functions

While in Set Theory functions are a derived concept (a subset of the cartesian
product with certain properties), in Type Theory functions are a primitive con-
cept. The basic idea is the same as in functional programming: basically a
function is a black box and you can feed it elements of its domain and out come
elements of its codomain. Hence given A,B : Type we introduce the type of
functions A ! B : Type. We can define a function explicitly, e.g. we define
f : N ! N as f(x) :⌘ x+3. Having defined f we can apply it, e.g. f(2) : N and
we can evaluate this application by replacing all occurrences of the parameter
x in the body of the function x+3 by the actual argument 2 hence f(2) ⌘ 2+3
and if we are lucky to know how to calculate 2 + 3 we can conclude f(2) ⌘ 5.

One word about syntax: in functional programming and in Type Theory we
try to save brackets and write f 2 for the application and also in the definition
we write f x :⌘ x+ 3.

The explicit definition of a function requires a name but we should be able
to define a function without having to give it a name - this is the justification
for the �-notation. We write �x.x + 3 : N ! N avoiding to have to name the
function. We can apply this (�x.x+3)(2) and the equality (�x.x+3)(2) ⌘ 2+3

4

is called �-reduction. The explicit definition f x ⌘ x+3 can now be understood
as a shorthand for f ⌘ �x.x+ 3.

In Type Theory every function has exactly one argument. To represent
functions with several arguments we use currying, that is we use a function
that returns a function. So for example the addition function g :⌘ �x.�y.x+ y

has type N ! (N ! N), that is if we apply it to one argument g 3 : N ! N it
returns the function that add 3 namely �y.3 + y. We can continue and supply
a further argument (g 3) 2 : N which reduces

(g 3) 2 ⌘ (�y.3 + y) 2

⌘ 3 + 2

To avoid the proliferation of brackets we decree that application is left associa-
tive hence we can write g 3 2 and that ! is left associative hence we can write
N ! N ! N for the type of g.

When calculating with variables we have to be a bit careful. Assume we
have a variable y : N hanging around, now what is g y? If we naively replace
x by y we obtain �y.y + y, that is the variable y got captured. This is not the
intended behaviour and to avoid capture we have to rename the bound variable
that is �x.�y.x + y ⌘ �x.�z.x + z - this equality is called ↵-congruence. After
having done this we can �-reduce. Here is the whole story

g y ⌘ (�x.�y.x+ y) y

⌘ (�x.�z.x+ z) y

⌘ �z.y + z

Clearly the choice of z here is arbitrary, but any other choice (apart from y)
would have yielded the same result upto ↵-congruence.

3.3 Products and sums

Given A,B : Type we can form their product A ⇥ B : Type and their sum
A + B : Type. The elements of a product are tuples, that is (a, b) : A ⇥ B if
a : A and b : B. The elements of a sum are injections that is left a : A + B if
a : A and right b : A+B, if b : B.

To define a function from a product or a sum it is su�cient to say what the
functions returns for the constructors, that is for tuples in the case of a product
or the injections in the case of a sum.

As an example we derive the tautology

P ^ (Q _R) , (P ^Q) _ (P ^R)

using the propositions as types translation. We assume that P,Q,R : Type, we
have to construct an element of the following type

((P ⇥ (Q+R) ! (P ⇥Q) + (P ⇥R))

⇥((P ⇥Q) + (P ⇥R) ! P ⇥ (Q+R))

5

We define:

f : P ⇥ (Q+R) ! (P ⇥Q) + (P ⇥R)

f (p, left q) :⌘ left (p, q)

f (p, right r) :⌘ right (p, r)

g : (P ⇥Q) + (P ⇥R) ! P ⇥ (Q+R)

g (left (p, q)) :⌘ (p, left q)

g (right (p, r))) :⌘ (p, right r)

Now the tuple (f, g) is an element of the type above.
In this case the two functions are actually inverses, but this is not necessary

to prove the logical equivalence.

Exercise 1 Using the propositions as types translation, try 2 to prove the fol-
lowing tautologies:

1. (P ^Q =) R) , (P =) Q =) R)

2. ((P _Q) =) R) , (P =) R) ^ (Q =) R)

3. ¬(P _Q) , ¬P ^ ¬Q

4. ¬(P ^Q) , ¬P _ ¬Q

5. ¬(P , ¬P)

where P,Q,R : Type are propositions represented as types.

Exercise 2 While the principle of excluded middle P _¬P (tertium non datur)
is not provable, prove its double negation using the propositions as types trans-
lation:

¬¬(P _ ¬P)

If for a particular proposition P we can establish P _¬P then we can also derive
the principle of indirect proof (reduction ad absurdo) for the same proposition
¬¬P =) P . Hence show:

(P _ ¬P) =) (¬¬P =) P)

However, the converse does not hold (what would be a counterexample?). How-
ever, use the two tautologies to show that the two principles are equivalent.

Functions out of products and sums can be reduced to using a fixed set of
combinators called non-dependent eliminators or recursors (even though there

2
I didn’t say they are all tautologies!

6

is no recursion going on).

R⇥ : (A ! B ! C) ! A⇥B ! C

R⇥
f (a, b) :⌘ f a b

R+ : (A ! C) ! (B ! C) ! A+B ! C

R+
f g (left a) :⌘ f a

R+
f g (right b) :⌘ g b

The recursor R⇥ for products maps a curried function f : A ! B ! C

into its uncurried form, taking tuples as arguments. The recursor R+ basically
implements the case function performing case analysis over elements of A+B.

Exercise 3 Show that using the recursor R⇥ we can define the projections:

fst : A⇥B ! A

fst (a, b) :⌘ a

snd : A⇥B ! B

snd (a, b) :⌘ b

Vice versa: can the recursor be defined using only the projections?

We also have the case of an empty product 1, called the unit type and the
empty sum 0, the empty type. There is only one element of the unit type: () : 1
and none in the empty type. We introduce the corresponding recursors:

R1 : C ! (1 ! C)

R1
c () :⌘ c

R0 : 0 ! C

The recursor for 1 is pretty useless, it just defines a constant function. The
recursor for the empty type implements the logical principle eq falso quod libet,
from false follows everything. There is no defining equation because it will never
be applied to an actual element.

Exercise 4 Construct solutions to exercises 1 and 2 using only the eliminators.

The use of arithmetical symbols for operators on types is justified because
they act like the corresponding operations on finite types. Let us identify the
number n with the type of elements 0

n

, 1
n

, . . . (n�1)
n

: n, then we observe that
it is indeed the case that:

0 = 0

m+ n = m+ n

1 = 1

m⇥ n = m⇥ n

7

Read = here as has the same number of elements. This use of equality will be
justified later when we introduce the univalence principle.

The arithmetic interpretation of types also extends to the function type,
which corresponds to exponentiation. Indeed, in Mathematics the function type
A ! B is often written as BA. And indeed we have:

m

n = n ! m

8

