
4 Dependent types

By a dependent type we mean a type indexed by elements of another type. For
example the types of n-tuples A

n : Type their elements are (a0, a1, . . . an�1) :
A

n where a
i

: A, or the finite type n : Type. Indeed, tuples are also indexed by
A : Type. We can use functions into Type to represent these dependent types:

Vec : Type ! N ! Type

VecAn :⌘ A

n

Fin : N ! Type

Finn :⌘ n

In the propositions as types view dependent types are used to represent predi-
cates, e.g. Prime : N ! Type assigns to any natural number n : N the type of
evidence Primen : Type that n is a prime number. This does not need to be
inhabited, e.g Prime 4 is empty. Using currying we can use this also to represent
relations, e.g. : N ! N ! Type, m n : Type is the type of evidence that
m is less or equal to n.

4.1 ⇧-types and ⌃-types

⇧-types generalize function types to allow the codomain of a function to depend
on the domain. For example consider the function zeroes that assigns to any
natural number n : N a vector of n zeroes

(0, 0, . . . , 0)| {z }
n

: Nn

We use ⇧ to write such a type:

zeroes : ⇧n : N.Nn

zeroesn :⌘ (0, 0, . . . , 0)| {z }
n

The non-dependent function type can now be understood as a special case of
⇧-types, A ! B ⌘ ⇧� : A.B.

In the same vain, ⌃-types generalize product types to the case when the
2nd component depends on the first. For example we can represent tuples of
arbitrary size as a pair of a natural number n : N and a vector of this size A

n

as an element of ⌃n : N.An. So for example (3, (1, 2, 3)) : ⌃n : N.Nn because
(1, 2, 3) : N3. Indeed, this type is very useful so we give it a name:

List : Type ! Type

ListA :⌘ ⌃n : N.An

9

In the propositions as types translation we use ⇧-types to represent evidence
for universal quantification. For example a proof of 8x : N.1 + x = x + 1 is a
dependent function of type f : ⇧x : N.1+ x = x+1, such that applying it as in
f 3 is evidence that 1 + 3 = 3 + 1.

Similar, we use ⌃-types to represent evidence for existential quantification
where the first component is the instance for which the property is supposed to
hold and the second component a proof that it holds for this particular instance.
For example the statement 9n : N.Primen is translated to ⌃n : N.Primen and
a proof of this is (3, p) where p : Prime 3.

As for ⇧-types the non-dependent products arise as a special case of ⌃-types:
A⇥B :⌘ ⌃� : A.B.

To avoid clutter we sometimes want to omit arguments to a ⇧-type when it
is derivable from later arguments or the first component of a ⌃-type. In this case
we write the argument in subscript as in ⇧

x:AB x or ⌃
x:AB x. For example if we

define ListA :⌘ ⌃
n:N.An we can omit the length and just write (1, 2, 3) : ListN.

We can also define a dependent recursor or eliminator for ⌃-types which
allows us to define any dependent function out of a ⌃-type. This eliminator is
not just parametrized by a type but by a family C : ⌃x : A.B x ! Type:

E⌃ : (⇧x : A,⇧y : B x.C (x, y)) ! ⇧p : ⌃x : A.B x.C p

E⌃
f (a, b) :⌘ f a b

Exercise 5 As in exercise 3 we can define projections out of a ⌃-type, let A :
Type and B : A ! Type:

fst : ⌃x : A.B x ! A

fst (a, b) :⌘ a

snd : ⇧p : ⌃x : A.B x.B (fst p)

snd (a, b) :⌘ b

Note that the type of the 2nd projections is a dependent function type using the
first projection.

Derive the projections using only the eliminator E⌃. Vice versa, can you
derive the eliminator from the projections without making further assumptions?

Exercise 6 Using the propositions as types translation for predicate logic try to
derive the following tautologies:

1. (8x : A.P x ^Qx) , (8x : A.P x) ^ (8x : A.Qx)

2. (9x : A.P x _Qx) , (9x : A.P x) _ (9x : A.Qx)

3. (9x : A.P x) =) R , ⇧x : A.P x =) R

4. ¬9x : A.P x , 8x : A.¬P x

5. ¬8x : A.P x , 9x : A.¬P x

10

where A,B : Type and P,Q : A ! Type, R : Type, represent predicates and
a proposition.

We have seen that ⌃-types are related to products but they are also related
to sums. Indeed we can derive + from ⌃ using as the first component an element
of Bool = 2 and the second component is either the first or the 2nd component
of the sum (assuming A,B : Type:

A+B : Type

A+B :⌘ ⌃x : Bool.if x thenA elseB

In the same way we can also derive ⇥ from ⇧ by using dependent functions over
the booleans which returns either one or the other component of the product.

A⇥B : Type

A⇥B :⌘ ⇧x : Bool.if x thenA elseB

It is interesting to note that ⇥ can be viewed in two di↵erent ways: either as a
non-dependent ⌃-type or as a dependent function-type over the booleans.

Exercise 7 Show that injections, pairing, non-dependent eliminators can be
derived for these encodings of sums and products.

Finally, we notice that the arithmetic interpretation of types extends to ⌃
and ⇧ giving a good justification for the choice of their names, let m : N and
f : m ! N:

⌃x : m.f x = ⌃x<m

x=0 f x

⇧x : m.f x = ⇧x<m

x=0 f x

4.2 Induction and recursion

Following Peano the natural numbers are introduced by saying that 0 is a natural
number (0 : N), and if n is a natural number (n : N) then sucn is a natural
number (sucn), which is equivalent to saying suc : N ! N. When defining
a function out of the natural numbers, we allow ourselves to recursively use
the function value on n to compute it for sucn. An example is the doubling
function:

double : N ! N
double 0 :⌘ 0

double (sucn) :⌘ suc (suc (doublen))

11

We can distill this idea into a non-dependent eliminator which is now right-
fully called the recursor:

RN : C ! (C ! C) ! N ! C

RN
z s 0 :⌘ z

RN
z s (sucn) :⌘ s (R z s n)

Exercise 8 We define addition recursively:

+ : N ! N ! N
0 + n :⌘ n

(sucm) + n :⌘ suc (m+ n)

Define addition using only the recursor RN.

Exercise 9 Not all recursive functions exactly fit into this scheme. For example
consider the function that halves a number forgetting the remainder:

half : N ! N
half 0 :⌘ 0

half (suc 0) :⌘ 0

half (suc (sucn)) :⌘ suc (half n)

Try to derive half only using the recursor RN.

When we want to prove a statement about natural numbers we have to
construct a dependent function. An example is the proof that half is the left
inverse of double: 8n : N.half (doublen) = n. I haven’t introduced equality yet
but we only need two ingredients to carry out this construction, given A,B :
Type:

refl : ⇧x : A.x = x

resp : ⇧f : A ! B.⇧
m,n:Nm = n ! f m = f n

Using those we can define a dependent function verifying the statement:

h : ⇧n : N.half (doublen) = n

h 0 :⌘ refl 0

h (sucn) :⌘ resp suc (hn)

As for ⌃-types we can derive dependent functions out of the natural numbers
using a dependent recursor or eliminator. Assume that we have a dependent
type C : N ! Type:

EN : C 0 ! (⇧n : N.C n ! C (sucn)) ! ⇧n : N.C n

EN
z s 0 :⌘ z

EN
z s (sucn) :⌘ s (E z s n)

12

Exercise 10 Derive h using only the dependent eliminator EN.

The type of EN precisely corresponds to the principle of induction - indeed from
the propositions as types point of view induction is just dependent recursion.

Exercise 11 Show that the natural numbers with + and 0 form a commutative
monoid:

1. 8x : N.0 + x = x

2. 8x : N.x+ 0 = x

3. 8x, y, z : N.x+ (y + z) = (x+ y) + z

4. 8x, y : N.x+ y = y + x

Not all dependent functions out of the natural numbers arise from the propo-
sitions as types translation. An example is the function zeroes : ⇧n : N.Nn which
we only introduced informally. We can make this precise by inductively defining
tuples:

nil : A0

cons : ⇧
n:NA

n ! A

sucn

Using this we can define zeroes by recursion

zeroes 0 :⌘ nil

zeroes (sucn) :⌘ cons 0 (zeroesn)

This can be easily translated into an application of the eliminator

zeroes :⌘ EN nil (cons 0)

Exercise 12 We can also define the finite types in an inductive way, overload-
ing 0 and suc:

0 : ⇧
n:Nsucn

suc : ⇧
n:Nm ! sucn

Using this and the inductive definition of An derive a general projection operator

nth : ⇧
n:NA

n ! n ! A

that extracts an arbitrary component of a tuple.

Exercise 13 Suggest definitions of eliminators for tuples and finite types. Can
you derive all the examples using them?

13

4.3 The equality type

Given a, b : A the equality type a =
A

b : Type is generated from one construc-
tor refl : ⇧

x:Ax =
A

x. That is we are saying that two things which are identical
are equal and this is the only way to construct an equality. Using this idea we
can establish some basic properties of equality, namely that it is an equivalence
relation, that is a relation that is reflexive, symmetric and transitive. More-
over, it is also a congruence, it is preserved by all functions. Since we already
have reflexivity from the definition, lets look at symmetry first. We can define
symmetry by just saying how it acts on reflexivity:

sym : ⇧
x,y:Ax = y ! y = x

sym refl
a

:⌘ refl
a

The main idea here is that once we apply sym to refl we also know that tht wto
points x, y : A must be identical and hence we can prove the result using refl
again.

Exercise 14 Provide proofs of

trans : ⇧
x,y,z:Ax = y ! y = z ! x = z

resp : ⇧f : A ! B.⇧
m,n:Nm = n ! f m = f n

using the same idea.

For equality there is a recursor and an eliminator, and for the examples above
we only need the recursor because we have no dependency on the actual proofs
of equality. However, there is some dependency because equality itself is a
dependent type. We assume a family that depends on the indices of equality
but not on the equality proofs themselves: C : A ! A ! Type then the
recursor is:

R= : (⇧x : A.C xx) ! ⇧
x,y:Ax = y ! C xy

R=
f (refl

a

) :⌘ f a

Exercise 15 Derive sym, trans, resp using the recursor R=.

What would be a statement that actually depends on equality proofs? It
seems that equality is rather trivial since there s at most one proof of it and
we should be able to prove this. This is called uniqueness of equality proofs
and states that any two proofs of equality are equal and it has an easy direct
definition exploiting exactly the fact that the only proof of equality is reflexivity:

uep : ⇧
x,y:A⇧p, q : x = y

uep refl
a

refl
a

:⌘ reflrefla

We now define the dependent eliminator for equality which E= which is also
called J but we stick to our terminology. This time we use a family that does

14

indeed depend on the equality proof C : ⇧
x,y:Ax = y ! Type

E= : (⇧
x:AC (refl

x

)) ! ⇧
x,y:A⇧p : x = y.C p

E=
f refl

x

:⌘ f

x

Now we should be able to perform the usual exercise and reduce the direct
definition of uep to one using only the eliminator. The first step is clear, by
eliminating one argument we can reduce the problem to:

⇧
x:A⇧q : x = x.refl

x

= q

but now we are stuck. We cannot apply the eliminator because we need a
family were both indices are arbitrary. Indeed, Hofmann and Streicher were
able to show that uep is unprovable from the eliminator. In the next section
we will discuss reasons why this is actually not a bad thing. However, at least
based on our current understanding of equality it seems that this is an unwanted
incompleteness. One which can actually fixed by introducing a special eliminator
which works exactly in the case when we want to prove something about equality
proofs where both indices are equal. That is we assume as given a family
C : ⇧

x:Ax = x ! Type and introduce

K : (⇧
x:AC refl

x

) ! ⇧
x:A⇧p : x = x.C p

K f refl
x

:⌘ f

x

This eliminator is called K because K is the next letter after J.

Exercise 16 Derive uep using only E= and K.

Exercise 17 Instead of viewing equality as a relation generated by refl, we can
also fix one index a : A and now define the predicate of being equal to a: a =
� : A ! Type. This predicate is generated by refl

a

: a = a so no change here.
However, the eliminator looks di↵erent. Let’s fix C : ⇧x : A.a = x ! Type

J

0
a

: (C refl
a

) ! ⇧
x:A⇧p : a = x.C p

J

0
a

f (refl
a

) :⌘ f

Show that E= and J

0 are interderivable, that is both views of equality are equiv-
alent.

15

