
5 Homotopy Type Theory

5.1 Proof relevant equality

If we are only use E= aka J we cannot in general prove that there is only one
proof of equality, but what can we prove? It turns out that we can indeed verify
some equalities:

trans p refl = p

trans refl p = p

trans (trans p q) r = trans p (trans q r)

trans p (sym p) = refl

trans (sym p) p = refl

where p : a =
A

b, q : b =
A

c and r : c =
A

d.
It is easy to verify these equalities using only J because all the quantifications

are over arbitrary p : x = y and there is no repetition of variables.

Exercise 18 Explicitly construct the proofs using J .

A structure with these properties is called a groupoid. A groupoid is a
category where every morphism is an isomorphism. Here the objects are the
elements of the type A, given a, b : A the homset (actually a type) is a =

A

b,
composition is trans, identity is refl and sym assigns to every morphism its
inverse.

We can go further an observe that resp also satisfies some useful equalities:

resp f refl = refl

resp f (trans p q) = trans (resp f p) (resp f q)

where f : A ! B, p : a =
A

b, q : b =
A

c.
In categorical terms this means that f is a functor: its e↵ect on objects a : A

is f a : B and its e↵ect on morphism p : a =
A

b is resp f p : f a =
B

f b.

Exercise 19 Why don’t we prove that resp f also preserves symmetries?

resp f (symp) = sym (resp f p)

Indeed, the idea of Streicher’s and Hofmann’s proof is to turn this around and
to show that we can generally interpret types as groupoids where the equality
type corresponds to the homset. Interestingly we can also interpret J in this
setting but clearly we cannot interpret K because it forces the groupoid to be
trivial, i.e. to be an equivalence relation. However, in the moment there is no
construction which generates non-trivial groupoids, but this will change once we
have the univalence principle or if we introduce Higher Inductive Types (HITs).

However, groupoids are not the whole story. There is no reason to assume
that the next level of equalities, i.e. the equality of the equality of equality proofs

16

is trivial. We need to add some further laws, so called coherence laws, which
are well known and we end up with a structure which is called a 2-Groupoid (in
particular all the homsets are groupoids). But the story doesn’t finish here we
can go on forever. The structure we are looking for is called a weak !-groupoid.
Alas, it is not very easy to write down what this is precisely. Luckily, homotopy
theoreticians have already looked at this problem and they have a definition: a
weak !-groupoid is a Kan complex, that is a simplicial set with all Kan fillers.
This is what Voevodsky has used in his homotopical model of Homotopy Type
Theory. However, it was noted that this construction uses classical principles,
i.e. the axiom of choice. Thierry Coquand and his team have now formulated a
constructive alternative which is based on cubical sets.

5.2 What is a proposition?

Previously, we have identified propositions as types but it is fair enough to
observe that types have more structure, they can carry more information by
having di↵erent inhabitants. This becomes obvious in the next exercise:

Exercise 20 Given A,B : Type and a relation R : A ! B ! Type the axiom
of choice can be stated as follows:

(8x : A.9y : B.Rx y) ! 9f : A ! B.8x : A.Rx (f x)

Apply the propositions as types translation and prove the axiom of choice.

This is strange because usually the axiom of choice is an indicator of using some
non-constructive principle in Mathematics. But now we can actually prove it in
Type Theory? Indeed, the formulation above doesn’t really convey the content
of the axiom of choice because the existential quantification is translated as
a ⌃-type and hence makes the choice of the witness explicit. In conventional
Mathematics propositions do not carry any information hence the axiom of
choice has to build the choice function without any access to choices made
when showing the premise.

To remedy this mismatch we are more specific about propositions: we say
that a type P : Type is a proposition if it has at most one inhabitant, that is
we define

isProp : Type ! Type

isPropA :⌘ ⇧x, y : A.x =
A

y

I write P : Prop for a type that is propositional, i.e. we can prove isPropP .
That is we are interpreting Prop as ⌃P : Type.isPropP but I am abusing
notation in that I omit the first projection (that is an instance of subtyping as
an implicit coercion).

Exercise 21 Show that equality for natural number is a proposition, that is
establish:

8x, y : N.isProp (x =N y)

17

Looking back at the proposition as types translation we would like that for
any proposition in predicate logic P we have that [[P]] : Prop. That can be
shown to be correct for the so called negative fragment, that is the subset of
predicate logic without _ and 9.

Exercise 22 Show that if P,Q : Prop and R : A ! Prop where A : Type
then

1. [[P =) Q]] : Prop

2. [[P ^Q]] : Prop

3. [[True]] : Prop

4. [[False]] : Prop

5. [[8x : A.P]] : Prop

However this fails for disjunction and existential quantification: [[True _ True]]
is equivalent to Bool which is certainly not propositional since true 6= false. Also
9x : Bool.True is equivalent to Bool and hence also not propositional.

To fix this we introduce a new operation which assigns to any type a proposi-
tion which expresses the fact that the type is inhabited. That is given A : Type
we construct ||A|| : Prop, this is called the propositional truncation of A. We
can construct elements of ||A|| from elements of A, that is we have a function
⌘ : A ! ||A||. However, we hide the identity of a, that is we postulate that
⌘ a = ⌘ b for all a, b : A. How can we construct a function out of ||A||? It would
be unsound if we would allow this function to recover the identity of an element.
This can be avoided if the codomain of the function is itself propositional. That
is given P : Prop and f : A ! P we can lift this function to f̂ : ||P || ! A with
f̂(⌘ a) ⌘ f a.

Using ||� || we can redefine [[�]] such that [[P]] : Prop:

[[P _Q]] ⌘ ||[[P]] + [[Q]]||
[[9x : A.P]] ⌘ ||⌃x : A.[[P]]||

Now the translation of the axiom of choice

(8x : A.9y : B.Rx y) ! 9f : A ! B.8x : A.Rx (f x)

which is

⇧x : A.||⌃y : B.Rx y|| ! ||⌃f : A ! B.8x : A.Rx (f x)||

is more suspicious. It basically say if for every x : A there is y : B with a certain
property, but I don’t tell you which one, then there is a function f : A ! B

which assigns to every x : A a f x : B with a certain property but I don’t tell
you which function. This sounds like a lie to me!

18

Indeed lies can make our system inconsistent or they can lead to classical
principle, which can be viewed is a form of lying that is not known to be incon-
sistent. Indeed, assuming one additional principle, propositional extensionality
we can derive the principle of excluded middle. This proof is due to Diaconescu.

By propositional extensionality we mean that two propositions which are
logically equivalent then they are equal:

propExt : ⇧P,Q : Prop.(P , Q) ! P = Q

This is reasonable because all what we matters about a proposition is wether
it is inhabited, and hence two proposition which are logically equivalent are
actually indistinguishable and hence extensionally equal. Indeed, we will see
that propExt is a consequence of the univalence principle.

Theorem 1 (Diaconescu) Assuming the amended translation of the axiom of
choice:

ac : ⇧x : A.||⌃y : B.Rx y|| ! ||⌃f : A ! B.8x : A.Rx (f x)||

and propExt we can derive the excluded middle for all propositions:

8P : Prop.P _ ¬P

We are going to instantiate A with the type of inhabited predicates over
Bool, that is

A :⌘ ⌃Q : Bool ! Prop.9b : Bool.Qb

B ⌘ Bool and the relation R : A ! B ! Prop is defined as follows:

R (Q, q) b :⌘ Qb

that is an inhabited predicate is related to the boolean it inhabits. Can we now
prove the premise of the axiom?

⇧x : A.||⌃y : B.Rx y||

that is after plugging in the definition of A,B,R it becomes

⇧(Q, q) : A.||⌃b : B.Q b||

and after some currying

⇧Q : Bool ! Prop.||⌃b : Bool.Qb|| ! ||⌃b : B.Q b||

it is quite obvious that we can.
Now let’s look at the conclusion.

||⌃f : A ! B.⇧x : A.Rx (f x)||

19

Let’s for the moment ignore the outermost ||� || and expand the types inside:

⌃f : A ! Bool.

⇧(Q, q) : A.Q (f Q)

We consider two special predicates T, F : Bool ! Prop:

T b :⌘ b = true _ P

F b :⌘ b = false _ P

Where does the P come from? From the beginning of this section: it is the
P : Prop for which we want to show P _ ¬P .

Now applying the conclusion of the axiom to these predicates we obtain two
booleans f T, f F : Bool and from the second part we know

T (f T) ⌘ (f T = true) _ P

F (f F) ⌘ (f F = false) _ P

Now let’s analyse all the possibilities: there are four combinations:

1. f T = true ^ f F = false

2. f T = true ^ P

3. P ^ f F = false

4. P ^ P

In 2-4 we know that P holds, the only other alternative in which P is not proven
is 1. In this case we can show ¬P that is P ! 0. For this purpose assume P , in
this case both T b and F b are provable for any b because P is and this means
T b , F b which now using propositional extensionality implies T b = F b. But
this means that T = F using functional extensionality. This cannot be since we
assumed that f T = true and f F = false, now T = F would imply true = false
which is false that is it implies 0. Hence we have shown ¬P by deriving a
contradiction from assuming P .

To summarise we have shown P _¬P because in the case 2-4 we have p and
in 1 we have ¬P . But hang on what about the ||� || we have been ignoring? It
doesn’t matter since P _¬P is already a proposition and putting ||� || around
it doesn’t change anything.

What has really happened is that from the lie that we can recover information
we have just hidden we can extract information as long as we hide the function
doing the extraction. And this has nothing to do with ⌃-types and existentials
but with the behaviour of the hiding operation, or inhabitance ||� ||. Hence we
can formulate a simpler version of the axiom of choice in Type Theory:

(⇧x : A.||B x||) ! ||⇧x : A.B x||

This implies the revised translation of the axiom.

20

5.3 Dimensions of types

We have classified types as propositions if they have at most one inhabitant.
uep says that equality is a proposition. Even of we are not accepting uep, we
can use this to classify types: we say that a type is a set if all its equalities are
propositions.

isSet : Type ! Type

isSetA :⌘ ⇧
x,y:AisProp (x =

A

y)

As for propositions we abuse notation and write A : Set if A : Type and we
can show isSetA. uep basically says that all types are set. The idea here is that
sets are types which are quite ordinary, they reflect our intuition that equality
is propositional.

Actually we can show that certain types are sets, e.g. exercise 21 basically
asks to prove that N : Set. However, we can do much better, we can show in
general that any type with a decidable equality is a set. This is a theorem due
to Michael Hedberg.

Theorem 2 (Hedberg) Given A : Type such that the equality is decidable

d : 8x, y : A.x = y _ x 6= y

then we can show
isSetA

To show Hedberg’s theorem we establish a lemma saying that if there is a
constant function on equality types then the equality is propositional. That is
we assume

f : ⇧
x,y:Ax =

A

y ! x =
A

y

c : ⇧
x,y:A⇧p, q : x =

A

y ! f p = f q

Now for arbitrary x, y : A, p : x = y we can show that p = trans (f p) (sym (f refl))
because using J this reduces ti showing that refl = trans (f refl) (sym (f refl))
which is one of the groupoid properties. Now given any p, q : x = y we can show

p = trans (f p) (sym (f refl))

= trans (f q) (sym (f refl)) using c

= q

And hence =
A

is propositional.
To construct the function f from decidability we assume p : x = y and apply

d x y. Either we have another proof q : x = y and we return this one, or we have
that x 6= y but this contradicts that we already have a proof p : x = y and we
can use R0. However, in either case the output doesn’t depend on the actual
value of the input and hence we can show that the function is constant.

21

Indeed, if we additionally assume the principle of functional extensionality

funExt : 8f, g : A ! B.(8x : A.f x = g x) ! f = g

we can strengthen Hedberg’s theorem:

Theorem 3 Given A : Type such that the equality is stable

s : 8x, y : A.¬¬(x = y) ! x = y

then we can show
isSetA

This strengthening shows that function types are sets, e.g. N ! N : Set even
though its equality is not decidable but it is stable.

To prove the stronger version we observe that for if equality is stable, we
can construct the function g : ⇧x, y : A.x = y ! x = y by composing s with
the obvious embedding x = y ! ¬¬(x = y). Since ¬¬(x = y) is propositional,
f must be constant.

Exercise 23 Show that equality of N ! N is stable.

We can extend the hierarchy we have started to construct with Prop and
Set. For example a type whose equalities are sets is called a groupoid (indeed
it corresponds to the notion of groupoid which we have introduced previously).

isGroupoid : Type ! Type

isGroupoidA :⌘ 8x, y : A.isSet (x =
A

y)

We can also extend this hierarchy downwards, we can redefine a proposition as
a type such that its equalities are types with eactly one element - these types
are called contractible:

isContractible : Type ! Type

isContractibleA :⌘ ⌃a : A.⇧x : A.x = a

isProp : Type ! Type

isPropA :⌘ ⇧x, y : A.isContractible (x = y)

We can now define the hierarchy starting with contractible types. For historic
reasons (i.e. to be compatible with notions from homotopy theory) we start
counting with �2 and not with 0. I am calling the levels dimensions, they are
also called truncation levels.

hasDimension : N�2 ! Type ! Type

hasDimension (�2)A :⌘ isContractibleA

hasDimension (n+ 1)A :⌘ 8x, y : A.hasDimension (x =
A

y)

22

I am writing N�2 for a version of the natural numbers where I start counting
with �2. To summarize the definitions so far:

Dimension Name
-2 Contractible types
-1 Propositions
0 Sets
1 Groupoids

We also introduce the notation n�Type for A : Type such that we can
show hasDimensionnA.

To convince ourselves that this really is a hierarchy, that is that every n�
Type is also a n+ 1�Type we need to show that the hierarchy actually stops
at �2 that is that the equality of a contractible type is again contractible.

To show this assume is given a contractible type A : Type that is we have
a : A and c : ⇧x : A.a = x. Now we want to show that for all x, y : A the equality
x =

A

y is contractible, that is we have an element and all other elements are
equal. We define d : ⇧x, y : A.x =

A

y as d x y :⌘ trans (sym (c x)) (c y). Now
it remains to show that e : ⇧x, y : A.⇧p : x =

A

y.d x y = p. Using J we can
reduce this to d xx = reflx unfolding d xx ⌘ trans (sym (c x)) (c x) we see that
this is an instance of one of our groupoid laws.

As a corollary we obtain that hasDimensionnA implies hasDimension (n+
1)A.

5.4 Extensionality and univalence

As I have already mentioned in the introduction: extensionality means that we
identify mathematical objects which behave the same even of they are defined
di↵erently. An example are the following two functions:

f, g : N ! N
f x :⌘ x+ 1

g x :⌘ 1 + x

We can show that 8x : N.f x = g x but can we show that f = g? The answer
is no, because if there were a proof without any assumption it would have to
be refl and this would only be possible if f ⌘ g but it is clear that they are not
definitionally equal. However, we cannot exhibit any property not involving this
equality which would di↵erentiate them. Another example are the following two
propositions:

P,Q : Prop

P :⌘ True

Q :⌘6 False

Again we cannot show that P ⌘ Q even though there clearly is no way to
di↵erentiate between them.

23

We have already mentioned the two principles which are missing here’:

funExt : 8f, g : A ! B.(8x : A.f x = g x) ! f = g

propExt : ⇧P,Q : Prop.(P , Q) ! P = Q

We note that the corresponding principles are true in set theory, which seems to
contradict my statement that Type Theory is better for extensional reasoning
than set theory. However, this shortcoming can be fixed since all constructions
preserve these equalities. This can be made precise by interpreting the con-
structions in the setoid model, where every type is modelled by a set with an
equivalence relation. In this case we can model function types by the set of
functions and equality is extensional equality. The same works for Prop, a
proposition is modelled by the set of propositions identified if they are logically
equivalent.

However, the shortcoming of set theory becomes obvious if we ask the next
question: when are two sets equal? For example

A,B : Set

A :⌘ 1 + 2

B :⌘ 2 + 1

We have no way to distinguish two sets with 3 elements, hence following the
same logic as above they should be equal. However, they are not equal in set
theory under the usual encoding of finite sets and + and it would be hard to fix
this in general.

When are two sets equal? Given f : A ! B we say that f is an isomorphism
if there it has an inverse, that is 3

isIso : (A ! B) ! Type

isIso f :⌘ ⌃g : B ! A

⌘ : ⇧x : B.f (g x) = x

✏ : ⇧x : A.g (f x) = x

And we define A ' B :⌘ ⌃f : A ! B.isIso f . Using isIso we can formulate a new
extensionality principle: we want to say that there is an isomorphism between
isomorphism of sets and equality of sets. Indeed, we can observe that the is a
function from equality of sets to isomorphism because every set is isomorphic
to itself using J .

Exercise 24 Define eq2iso : ⇧
A,B:SetA = B ! A ' B

Using this we can state extensionality for sets

extSet : isIso eq2iso

As a corollary we get that A ' B ! A = B. Since 1 + 2 ' 1 + 2 we can show
that 1 + 2 = 1 + 2

3
I am using here a record like syntax for iterated ⌃-types.

24

Exercise 25 Show that

1. (A+B) ! C = (A ! C)⇥ (B ! C)

2. (A⇥B) ! C = A ! B ! C

3. 1 + N = N

4. N⇥ N = N

5. ListN = N

6. N ! N 6= N

assuming A,B,C : Set. For which of the results do we not need extSet?

Exercise 26 An alternative to isomorphism is bijection, one way to say that a
function is bijective is to say there is a unique element in the domain which is
mapped to an element of the codomain. We define 9! (exists unique) :

9!x : A.P x :⌘ 9x : A.P x ^ 8y : A,P y =) x = y

and using this we define what is a bijection:

isBij : (A ! B) ! Prop

isBij f :⌘ 8y : B.9!x : A.f x = y

Show that isomorphism and bijection are logically equivalent:

8 f : A ! B.isBij f , isIso f

extSet is incompatible with uniqueness of equality proofs (uep) because there
are two elements of 2 ' 2, namely identity and negation. If we assume that
there is only one proof of equality for 2 = 2 then we also identify this two proofs
and hence 02 = 12 which is inconsistent.

So far we have only considered sets what about types in general? There is a
twist: if equality is not propositional then the ⌘ and ✏ components of isIso are
not propositional in general. Indeed, assuming extSet for all types is unsound.
Instead we need to refine the notion of isomorphism by introducing an extra
condition which relates ⌘ and ✏. We call this equivalence of types.

isEquiv : (A ! B) ! Type

isEquiv f :⌘ ⌃g : B ! A

⌘ : ⇧x : B.f (g x) = x

✏ : ⇧x : A.g (f x) = x

� : ⇧x : A.⌘ (f x) = resp f (✏x)

And we define A

⇠= B :⌘ ⌃f : A ! B.isEquiv f .

25

Exercise 27 Define eq2equiv : ⇧
A,B:SetA = B ! A

⇠= B

We can now state extensionality for types, which is what is commonly called
univalence.

univalence : isEquiv eq2equiv

As before for extSet a consequence is that equivalence of types implies equality
A

⇠= B ! A = B which is what most people remember about univalence. In the
special case of sets equivalence and isomorphism agree because the type of � is an
equivalence, that is for sets we have (A ' B) = (A ⇠= B). But more is true, even
for types in general equivalence and isomorphism are logically equivalence, that
is (A ' B) , (A ⇠= B). While this may be surprising at the first glance, it just
means that we can define functions in both directions but they are not inverse
to each other. Indeed, in general there are more proofs of an isomorphism that
of an equivalence, indeed isEquiv f is a proposition, while isIso f in general isn’t
(but it is if f is a function between sets). However, the logical equivalence of
equivalence and isomorphism means that to establish an equivalence all we need
to do is to construct an isomorphism. IN particular all the equalities of exercise
25 hold for types in general.

The definition of isEquiv looks strangely assymmetric. Indeed, we could
have replaced � with its symmetric twin:

�

0 : ⇧y : A.resp g ⌘ y = ✏ (g y)

Indeed, we can either use � or �0 it doesn’t make any di↵erence. Why don’t we
use both? Indeed, this would exactly be the definition of an adjunction between
groupoids. However, assuming both messes everything up, now isEquiv f is no
longer a proposition and we need to add higher level coherence equations to fix
this. Indeed, there is such an infinitary (coinductive) defintion of equivalence.
But we don’t need to use this, the asymmetric definition (or its mirror image)
does the job.

Exercise 28 We can extend exercise 26 to the case of equivalences by taking
the equality proofs into account. That is we say that not only there is a unique
inverse but that the pair of inverses and the proof that there are an inverse are
unique that is contractible. We define

isEquiv0 : (A ! B) ! Type

isEquiv0 f :⌘ ⇧y : B.isContr (⌃x : A.f x = y)

We have observed that already extSet implies that there are non-propositional
equality, e.g. 2 = 2. In other words the first universe Type0 is not a set. Nico-
lai Kraus has generalize this and shown that using univalence we can construct
types which are non n�Type for any n : N. I leave is an exercise to do the
forst step in this construction:

Exercise 29 Show that the equalities of ⌃X : Type0.X = X is not always sets
and hence Type1 is not a groupoid.

26

