1. (a) Transition diagram for A

Transition diagram for B

(b) Determine which of the following words belong to $L(A), L(B)$:

i. $\epsilon \in L(A)$ $\epsilon \notin L(B)$
ii. $aabb \in L(A)$ $aabb \notin L(B)$
iii. $aaab \notin L(A)$ $aaab \in L(B)$
iv. $bbb \in L(A)$ $bbb \notin L(B)$

(c)

$\hat{\delta}_A(0, bab) = \hat{\delta}_A(\hat{\delta}_A(0, b), ab)$ definition of $\hat{\delta}$

$= \hat{\delta}_A(2, ab)$ because $\hat{\delta}_A(0, b) = 2$

$= \hat{\delta}_A(\hat{\delta}_A(2, a), b)$ definition of $\hat{\delta}$

$= \hat{\delta}_A(3, b)$ because $\hat{\delta}_A(2, a) = 3$

$= \hat{\delta}_A(\hat{\delta}_A(3, b), \epsilon)$ definition of $\hat{\delta}$

$= \hat{\delta}_A(1, \epsilon)$ because $\hat{\delta}_A(3, b) = 1$

$= 1$ definition of $\hat{\delta}$
\[\delta_B(0, \text{bab}) = \delta_B(\delta_B(0, b), ab) \text{ definition of } \delta \]
\[= \delta_B(0, ab) \text{ because } \delta_B(0, b) = 0 \]
\[= \delta_B(\delta_B(0, a), b) \text{ definition of } \delta \]
\[= \delta_B(1, b) \text{ because } \delta_B(0, a) = 1 \]
\[= \delta_B(\delta_B(1, b), \epsilon) \text{ definition of } \delta \]
\[= \delta_B(3, \epsilon) \text{ because } \delta_B(1, b) = 3 \]
\[= 3 \text{ definition of } \delta \]

(d) \(L(A) \) contains all the words such that the number of a’s and b’s have a different remainder when divided by 2. Writing \(\#(x, w) \) for the number of x’s in w we can express this by:

\[L(A) = \{ w \mid \#(a, w) \not\equiv \#(b, w) \text{mod2} \} \]

\(L(B) \) contains all words such that the letter before the last one is a.

\[L(B) = \{ wax \mid w \in \{a, b\}^*, x \in \{a, b\} \} \]