1. Consider the following Pushdown Automaton P:

$$P = (Q = \{0, 1, 2\}, \Sigma = \{a, b, c\}, \Gamma = \{a, \#,\}, \delta, q_0 = 0, Z_0 = \#)$$

where the transition function δ is given by:

- $\delta(0, \varepsilon, \#) = \{(0, \varepsilon), (1, \#)\}$
- $\delta(0, a, \#) = \{(0, a\#)\}$
- $\delta(0, a, a) = \{(0, aa)\}$
- $\delta(0, \varepsilon, a) = \{(1, a)\}$
- $\delta(1, \varepsilon, \#) = \{(1, \varepsilon)\}$
- $\delta(1, b, \#) = \{(1, \#)\}$
- $\delta(1, b, a) = \{(1, a)\}$
- $\delta(1, c, a) = \{(2, c)\}$
- $\delta(2, \varepsilon, \#) = \{(2, c)\}$
- $\delta(2, c, a) = \{(2, c)\}$
- $\delta(\omega, \omega, \omega) = \emptyset$

Acceptance is by empty stack.

(a) Draw a transition diagram for P.

(b) For each of the following words, state whether they are accepted by P, and, for those that are, give a sequence of Instantaneous Descriptions leading to an accepting configuration.

i. ε

ii. a

iii. ab

iv. ac

v. bb

vi. abc

vii. $aabbc$

viii. $aabec$

ix. $abcecc$

Note: Just give the sequence of IDs separated by \vdash’s, a formal calculation with hints is not required.

(c) Give a set comprehension defining the language accepted by P.

2. Consider the Context-Free Grammar

$$G = (\{S, X, Y, Z\}, \{a, b, c, d\}, P, S)$$

where P is given by:

- $S \rightarrow X \mid Y \mid cZ$
- $X \rightarrow aXb \mid \varepsilon$
- $Y \rightarrow bbc \mid abba$
- $Z \rightarrow cZdd \mid \varepsilon$
(a) For each of the following words, state whether they are in the language generated by G, and, for those that are, give a complete derivation sequence from the start symbol S.

i. ε
ii. a
iii. c
iv. ab
v. ba
vi. bcc
vii. cd
viii. $ccdd$
ix. $cabba$
x. $ccddd$
xi. $aaabbb$

(b) Give a set expression (using set comprehensions and operations on sets like union) denoting the language $L(G)$.

(c) Is it possible to construct a Regular Expression R such that $L(R) = L(G)$? If so, do so. If not, give a brief justification of why not.

3. Consider the following Context-Free Grammar Exp:

\[
\begin{align*}
T & \rightarrow T + T \mid F \\
F & \rightarrow F * F \mid P \\
P & \rightarrow N \left(A\right) \mid (T) \mid I \\
N & \rightarrow f \mid g \mid h \\
A & \rightarrow T \mid \varepsilon \\
I & \rightarrow DI \mid D \\
D & \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9
\end{align*}
\]

T, F, P, N, A, I, D are nonterminals;
$+, *, f, g, h, (, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9$ are terminals;
T is the start symbol.

(a) For each of the following strings of terminals and nonterminals:
- state whether it is in the language generated by Exp;
- state whether it is a sentential form of Exp;
- if it is a sentential form, state whether it is a left-sentential form;
- if it is a left-sentential form, give a complete leftmost derivation sequence from the start symbol T.

i. ε
ii. $g \left(13 + f \left(\right)\right)$
iii. $I * g \left(D + f + g \left(\right)\right)$
iv. $2 \left(f \left(17\right)\right) + g \left(4\right)$
v. $N \left(3 * F\right) * h \left(\right)$
vi. $33 + 7) * h \left(21 + 6 * f \left(13 * 542\right)\right)$
(b) **Bonus Exercise**

i. Modify the relevant productions of the grammar Exp so that a function symbol (one of f, g, h) can be applied to zero, one, or more arguments, instead of just zero or one arguments. When there are two or more arguments, they should each be separated by a single comma. For example, it should be possible to derive words such as

$$f (7, g (), h (3 + 4))$$

ii. Explain your construction.

iii. Give a complete rightmost derivation sequence for the word $f(1, 2, 3)$ using your modified grammar.