The terms **alphabet**, **word** and **language** are used in a strict technical sense in this course.

- An **alphabet** is a **finite set** of symbols.
- A **word** is a **finite sequence** of symbols.
- A **language** is a **set** of words.
- Languages can be finite or infinite.
- The term **string** is often used interchangeably with the term **word**.
Symbols and Alphabets

- What is a symbol, then?
- Anything, but it has to come from an alphabet.
- Usually, \(\Sigma \) is used to denote an alphabet.
- Example alphabets:

\[
\begin{align*}
\Sigma_1 & = \{0, 1\} \\
\Sigma_2 & = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\} \\
\Sigma_3 & = \{\circ, \Box, \triangle\} \\
\Sigma_4 & = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, *, /\}
\end{align*}
\]

- Important exception: \(\varepsilon \) is never used as an alphabet symbol.
The Empty Word

- ε is used to denote the empty word: the sequence of zero symbols.
- But ε itself is not a symbol!
- ε is a word, not a set.
- So don’t confuse it with the empty set (denoted \emptyset or $\{\}$.)
- Thus, $\{\varepsilon\} \neq \{\}$.
The set of all words over an alphabet Σ is denoted by Σ^*. Σ^* can be defined inductively as follows:

- $\varepsilon \in \Sigma^*$
- If $x \in \Sigma$ and $w \in \Sigma^*$ then $xw \in \Sigma^*$

Note that $\varepsilon \in \Sigma^*$ for any alphabet Σ (including $\Sigma = \emptyset$).

Iff $\Sigma \neq \emptyset$ then Σ^* is an infinite set (of finite words).
Example

- Given $\Sigma = \{0, 1\}$, some elements of Σ^* are:

 - ε,
 - 0, 1,
 - 00, 10, 01, 11,
 - 000, 100, 010, 110, 001, 101, 011, 111,
 - 0000, . . .

- This is just applying the inductive definition.

- Important note: only write ε if it appears on its own, as it denotes an absence of symbols.
The set of all words over Σ of length n is denoted by Σ^n (where $n \in \mathbb{N}$).

For example, if $\Sigma = \{a, b\}$, then $\Sigma^2 = \{aa, ab, ba, bb\}$.

This can be used to give an alternative (but equivalent) definition of Σ^*:

$$\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n$$

Remember that in computer science, $0 \in \mathbb{N}$.
A language L over an alphabet Σ is a subset of Σ^*:

$$L \subseteq \Sigma^*$$

or

$$L \in \mathcal{P}(\Sigma^*)$$

A language may be a finite or infinite set.

Note that while ε is always an element of Σ^*, it may or may not be an element of an arbitrary language.
Exercise

Given $\Sigma = \{a, b, c\}$, define some languages over Σ.

- $\{a, abba, baa, cab\}$
- $\{c\}$
- $\{\varepsilon, a, bbb\}$
- $\{\varepsilon\}$
- $\{a^n \mid n \in \mathbb{N}\}$
- $\{a^n b^n \mid n \in \mathbb{N}, n \geq 10\}$
- $\{w \mid w \in \Sigma^*, \text{odd (length (w))}\}$
- \emptyset
- Σ^*
An important operation on words (Σ^*) is **concatenation**.

Concatenation is denoted by **juxtaposition** (i.e. writing the words side by side without using an operator symbol).

If $v \in \Sigma^*$ and $w \in \Sigma^*$ then $vw \in \Sigma^*$

Concatenation can be defined by primitive recursion:

\[
\begin{align*}
\varepsilon w &= w \\
(xv)w &= x(vw)
\end{align*}
\]

where

\[
\begin{align*}
x &\in \Sigma \\
v, w &\in \Sigma^*
\end{align*}
\]
Properties of Word Concatenation

- Concatenation is **associative** and has unit ε:

 $$u \ (vw) = (uv) \ w$$
 $$\varepsilon u = u = u \varepsilon$$

 where

 $$u, v, w \in \Sigma^*$$

- Concatenation of words is **not commutative** (i.e. order matters), as words are sequences.

 $$vw \neq wv$$
Remember, languages are *sets*, not sequences.

Given two languages M and N over an alphabet Σ, their concatenation (MN) is defined:

$$MN = \{uv \mid u \in M \land v \in N\}$$

Example:

$$\Sigma = \{a, b, c\}$$

$$M = \{\varepsilon, a, aa\}$$

$$N = \{b, c\}$$

$$MN = \{uv \mid u \in \{\varepsilon, a, aa\} \land v \in \{b, c\}\}$$

$$= \{\varepsilon b, \varepsilon c, ab, ac, aab, aac\}$$

$$= \{b, c, ab, ac, aab, aac\}$$
Properties of Language Concatenation (1)

- Concatenation of languages is **associative**:

 \[L(MN) = (LM)N \]

- Concatenation of languages has **zero** \(\emptyset\) (the empty language):

 \[L\emptyset = \emptyset = \emptyset L \]

- Concatenation of languages has **unit** \(\{\varepsilon\}\) (the language containing only the empty word):

 \[L\{\varepsilon\} = L = \{\varepsilon\}L \]
Properties of Language Concatenation (2)

- Concatenation of languages distributes through set union:

\[L (M \cup N) = LM \cup LN \]
\[(L \cup M) N = LN \cup MN \]

- But it **does not** distribute through set intersection:

\[L (M \cap N) \neq LM \cap LN \]

- Counterexample:

\[L = \{ \varepsilon, a \}, M = \{ \varepsilon \}, N = \{ a \} \]
\[L (M \cap N) = L\emptyset = \emptyset \]
\[LM \cap LN = \{ \varepsilon, a \} \cap \{ a, aa \} = \{ a \} \]
A language can be concatenated with itself.

Exponent notation is often used for this:
- $L^1 = L$
- $L^2 = LL$
- $L^3 = LLL$
- $L^4 = LLLL$
- etc.

L^0 is defined to be $\{\varepsilon\}$.
(As $\{\varepsilon\}$ is the unit of concatenation.)
Kleene Star

- Given $L \subseteq \Sigma^*$, L^* is zero or more concatenations of L.
- Note that these are different stars (but both mean ‘zero or more’).

$$L^* = \{w_0 w_1 \ldots w_{n-1} \mid n, i \in \mathbb{N}, \forall i < n, w_i \in L\}$$

or

$$L^* = \bigcup_{n=0}^{\infty} L^n = L^0 \cup L^1 \cup L^2 \cup \ldots$$

or

$$\varepsilon \in L^*$$

$$w \in L \quad \Rightarrow \quad w \in L^*$$

$$v \in L^* \land w \in L^* \quad \Rightarrow \quad vw \in L^*$$
Language Membership

- Fundamental question of this module:

 Given a language \(L \subseteq \Sigma^* \) and a word \(w \in \Sigma^* \), can we determine if \(w \in L \)?

- If \(L \) is finite, this is easy.

- But not so easy if \(L \) is infinite, which most interesting languages are.

- We need:

 - A finite (and preferably concise) description of the (infinite) language.

 - A method to decide if \(w \in L \) or not, given such a description.

- Over the course of this module we are going to encounter a number of possibilities, with varying descriptive power.
Recommended Reading

- Introduction to Automata Theory, Languages, and Computation (3rd edition), pages 28–33.
- G52MAL Lecture Notes, page 6.