Mathematics for Computer Scientists 2
(G52MC2)
L08 : Peano arithmetic

Thorsten Altenkirch

School of Computer Science
University of Nottingham

November 5, 2009
What are the natural numbers?

Guiseppe Peano (1858-1932)

- Peano codified the theory of the natural numbers \((\mathbb{N} = \{0, 1, 2, 3, \ldots \})\).
- All Peano numbers are constructed from 0 and successor \(S\). E.g. \(1 = S\ 0\), \(2 = S\ (S\ 0)\), \(3 = S\ (S\ (S\ 0))\).
- Peano presented a system of axioms in predicate logic stating fundamental properties of the natural numbers.
- We refer to this system as *Peano Arithmetic*.
In Coq we can define the natural numbers following Peano:

\[
\text{Inductive nat : Set :=}
\begin{align*}
| \ & \text{O : nat} \\
| \ & \text{S : nat -> nat.}
\end{align*}
\]

Verifying Peano’s axioms

- There is no natural number whose successor is 0.

\[
\forall n : \mathbb{N}, S\ n \neq 0
\]

- If the successors of two numbers are the same, then the numbers must be the same.

\[
\forall m n : \mathbb{N}, S\ m = S\ n \rightarrow m = n
\]
One of Peano’s most important axioms is:

The principle of induction

If a property is true for 0 and closed under successor (i.e. if it holds for \(n \) then also holds for \(S\ n \)), then it holds for all natural numbers.

Given \(P : \mathbb{N} \rightarrow \text{Prop} \):

\[
P 0 \rightarrow (\forall i : \mathbb{N}, \ P \ i \rightarrow P (S \ i)) \rightarrow \forall n : \mathbb{N}, \ P \ n
\]

- In Coq we use the **induction** tactic.
- induction is similar to case.
In Coq (and Mathematics) definitions are not allowed to be recursive.

Coq will reject the following *definition*

```
Definition is_even (n : nat) : bool :=
  match n with
  | 0 => true
  | S n' => negb (is_even n')
end.
```

Instead we have to use *Fixpoint*:

```
Fixpoint is_even (n : nat) : bool :=
  match n with
  | 0 => true
  | S n' => negb (is_even n')
end.
```

The fixpoint of a function $f : A \rightarrow A$ is an element $a : A$ such that $f a = a$.
Indeed \texttt{is_even} is the unique fixpoint of:

\begin{verbatim}
Definition f_is_even : (nat -> bool) -> (nat -> bool) :=
 fun (h : nat -> bool) => fun (n:nat) =>
 match n with
 | 0 => true
 | S n' => negb (h n')
 end.
\end{verbatim}

Not every function has a fixpoint, e.g.

\begin{verbatim}
Definition f_no_fix : (nat -> bool) -> (nat -> bool) :=
 fun (h : nat -> bool) => fun (n:nat) => negb (h n)
\end{verbatim}

hence the following fixpoint is rejected by Coq:

\begin{verbatim}
Fixpoint no_fix (n:nat) : nat :=
 negb (no_fix n).
\end{verbatim}

Other functions have infinitely many fixpoints (Can you think of an example?).
Coq only accepts fixpoints, which are structurally recursive. This is the recursive call has to be applied to a substructure of the original argument.

Hence `is_even` is structurally recursive but also `half` (see `l08.v`)

The functions related to structurally recursive definitions always have a unique fixpoint.

For functions with several arguments, the structurally recursive position has to be indicated using `struct`.
Examples are addition and multiplication:

Fixpoint plus (n m:nat) {struct n} : nat :=
 match n with
 | O => m
 | S n' => S (plus n' m)
end.

Fixpoint mult (n m:nat) {struct n} : nat :=
 match n with
 | O => 0
 | S n' => m + mult n' m
end.

- In Coq both are predefined using + and *.
- Peano only defined addition and multiplication.
- All other structural recursive functions are definable from those.
- Arithmetic with addition only is called Pressburger Arithmetic. Unlike Peano Arithmetic it is decidable!
Using induction we can establish the usual algebraic properties for $+$ and \times:

\[
m + n = n + m \quad \text{commutativity of addition}
\]
\[
m + (n + p) = (m + n) + p \quad \text{associativity of addition}
\]
\[
i \times (j + k) = i \times j + i \times k \quad \text{commutativity of multiplication}
\]

What other properties can you think of?