Computer Aided Formal Reasoning (G53CFR, G54CFR)

You guys are both my witnesses... He insinuated that ZFC set theory is superior to Type Theory!
Zermelo-Fraenkel Set Theory

Zermelo (1871-1953) Fraenkel (1891-1965)

- Axiomatic Set Theory ≈ 1925
- ZFC = Zermelo-Fraenkel with Axiom of Choice
- Foundations of modern Mathematics
- Additional axioms, e.g. the continuum hypothesis
Axiom of extensionality \(\forall x \forall y [\forall z (z \in x \iff z \in y) \Rightarrow x = y] \)

Axiom of regularity \(\forall x [\exists a (a \in x) \Rightarrow \exists y (y \in x \land \neg \exists z (z \in y \land z \in x))] \)

Axiom schema of specification \(\forall z \forall w_1 \ldots w_n \exists y \forall x [x \in y \iff (x \in z \land \phi)] \)

Axiom of pairing \(\forall x \forall y \exists z (x \in z \land y \in z) \)

Axiom of union \(\forall F \exists A \forall Y \forall x (x \in Y \land Y \in F \Rightarrow x \in A) \)

Axiom schema of replacement . . .

Axiom of infinity . . .

Axiom of power set . . .

Axiom of Choice . . .
Set Theory for Computer Science?

- Set Theory is untyped (everything is a set), while programming languages are typed (either statically or dynamically).
- Basic concepts from computer science (records, functions) are not primitive in Set Theory.
- Basic operations in set theory (e.g. \cap, \cup) are not directly available on types.
- Set Theory is not constructive, i.e. there is a set theoretic function solving the Halting Problem.

Question:
Is there an alternative to Set Theory?
Martin-Löf Type Theory

Per Martin-Löf (1942-)

- Martin-Löf introduced Type Theory as a constructive foundation of Mathematics since 1972.
- Type Theory doesn’t rely on predicate logic but uses types to represent propositions.
- Basic operations on types are \(\Pi \)-types (dependent function types) and \(\Sigma \)-types (dependent records).
- Type Theory is a programming language.
Propositions as types
(The Curry-Howard Isomorphism)

- A proposition corresponds to the types of it proofs.
- A proposition is true if the corresponding type is non-empty.
- Conjunction $A \land B$ is represented by cartesian product $(A \times B)$.
- Implication $A \rightarrow B$ is represented by function types $A \rightarrow B$ (looks the same).
- \forall and \exists correspond to Π (dependent function) and Σ (dependent records).
Agda

Ulf Norell

- Ulf Norell has implemented Agda, a functional programming language based on Type Theory in his PhD in 2007.
- Agda is inspired by earlier systems such as Epigram, Cayenne and Coq.
- Agda can be used to program and to reason.
Course contents

1. Agda intro
2. Propositions as types (using Agda)
3. Dependently typed programming (in Agda)
 - Refining programs to certifiably correct programs
 - Representing data formats
 - Typed Domain Specific Libraries
Practicalities

- Two lectures: Tuesday and Thursday morning. *The early student catches the first.*
- Lab sessions each Friday 10:00, B52 (using Agda)
- Regular coursework (in Agda)
- Resources: available online

 http://www.cs.nott.ac.uk/~txa/g53cfr/
Assessment

G53CFR 40% Exercises
 60% Online exam

G54CFR 40% Online exam
 60% Project