
Plan of the talk

• What is descriptive complexity. Main result of
the chapter (Fagin’s theorem).

• First order logic

• Second order existential logic (SO∃)

• Spectral problem

• NP

• SO∃ ⊆ NP (all queries expressed in SO∃ can
be evaluated on an NP machine).

• NP ⊆ SO∃ (allNP problems can be expressed
in SO∃).

1

What is descriptive complexity

Descriptive complexity is about capturing
complexity classes in logic.

Instead of using computer resources to
characterise the difficulty of a problem, use
expressive power of a logic.

Fagin’s theorem: a problem is in NP if, and only if, it
is expressible in existential second order logic
(Fagin, 1974).

2

Relational structures

A relational structure A consists of

• a set called the domain of A, A.

• a set of relations on A: an r-ary relation on A

is a subset of Ar (r > 0). Relations are named
by relation symbols.

Signature of a structure is a set of symbols for
relations and constants of the structure.

Note that anything can be represented as a
relational structure. A binary string s = s1 . . . sn,
for example, corresponds to a relational structure
〈A,<,BIT 〉 where |A| = n, < is a total order and
BIT(ai) holds if the ith bit of s is 1.

3

Language of first order logic

Logical symbols

• variables x, y, x1, . . .

• equality =

• boolean connectives ¬, ∧, ∨, →

• quantifiers ∀, ∃

plus some signature τ (non-logical symbols):

• relation symbols.

4

Atomic formulas

• if x and y are variables, then x = y is an
atomic formula

• if x1, . . . , xn are variables and R is an n-ary
relation symbol, then R(x1, . . . , xn) is an
atomic formula.

5

Formulas

• An atomic formula is a formula;

• If ϕ, ψ are formulas, then so are ¬ϕ, ϕ ∧ ψ,
ϕ ∨ ψ, ϕ→ ψ.

• If ϕ is a formula, and x a variable, then ∀xϕ
and ∃xϕ are formulas. Occurrences of x in the
scope of the quantifier are bound by this
quantifier (unless they are already bound by
another quantifier). Variables which are not
bound are called free.

A formula with no free variables is called a
sentence.

6

Meaning of formulas

ϕ is satisfied by assignment s on A (s is a finction
from variables into A), A, s |= ϕ:

• A, s |= x= y iff s(x) = s(y)

• A, s |= R(x1, . . . , xr) iff 〈s(x1), . . . , s(xr)〉 ∈
RA

• A, s |= ¬ϕ iff A, s
|= ϕ

• A, s |= ϕ ∧ ψ iff A, s |= ϕ and A, s |= ψ

• A, s |= ∃xϕ iff for some assignment s′ which
differs from s at most in the value assigned to
x, A, s′ |= ϕ

7

Evaluating second order formulas

Second order formulas are evaluated on relational
structures in the same way as first order formulas.

A, s |= ∃Xrϕ iff there is an interpretation of X
such that under this interpretation A, s |= ϕ.
(There is a set R of r-tuples from A such that if X
is interpreted as R, A, s |= ϕ in the usual
first-order sense.)

8

Existential second order logic

Only existential quantifiers over relational variables
are allowed. All formulas in SO∃ can be written as

∃X1 . . . ∃Xnφ
where X1, . . . , Xn are relational variables and φ a
formula which does not contain second order
quantifiers (quantifiers over relational variables).

9

Spectral problem

Given a first order formula φ,

Spectrum(φ) = {n : ∃A(A |= φ and |A| = n)}

Spectral problem: characterise such sets; are they
closed under complement?

Given a SO∃ formula ψ,

Models(ψ) = {A : A |= φ and A is finite}

is called generalised spectrum of ψ.

How hard is it to answer, whether for a SO∃
formula ψ, a particular relational structure is in
Models(ψ)?

10

Turing machine

Abstraction of a computing device; used to define
complexity classes.

A Turing machine has:

1. a tape (unbounded to the right)

2. finite work alphabet Σ

3. a head which can read a symbol from Σ in the
cell it is facing, write a symbol from Σ in the
cell it is facing, and move one cell to the left or
to the right or stay in the same cell

4. a finite set of states, which includes initial state
s0, accepting state s+, rejecting state s−.

5. a finite set of instructions of the form: ‘if you
are in state s reading a symbol a then replace
a with b, move left (or right, or don’t move) and
go into state s′’.

11

Deterministic vs non-deterministic Turing
machines

• Deterministic TM: at most one instruction for
any state and symbol pair.

• Non-deterministic TM: more than one
instruction may be applicable in some
situations.

A deterministic TM accepts an input string if its
computation started with the input on its tape halts
in an accepting state. A non-deterministic TM
accepts an input string if one of its computations
starting with this input halts in an accepting state.

12

Time and space bounds

Obviously we can write a set of instructions for a
TM so that it never stops and keeps using more and
more cells on the tape.

In general, it is undecidable whether a TM stops
(halting problem) and after how many steps it halts
on a given input.

However, for some problems, we can say how many
steps the TM will need to make and how many cells
on the work tape it will need.

Those problems can be guaranteed to be solved by
a TM with a bounded tape and a clock which stops
it after so many steps (both bounds depend on the
size of the input).

13

Problems

What do we mean by ‘problems computable by such
and such machine’?

Since inputs to Turing machines are strings, prob-
lems are languages (classes of strings).

However, we can represent binary strings by rela-
tional structures.

We can also encode relational structures as strings
(provided we assume some order on elements).

So, in what follows, we will identify problems with
properties of relational structures.

14

Space and time complexity classes

DTIME(t(n)) the set of problems computable
by a deterministic TM in O(t(n)) steps for in-
puts of size n. (The number of steps is bounded
from above by a function of the form t(n), for all
n which are larger than some n0.)

NTIME(t(n)) the set of problems computable
by a non-deterministic TM in O(t(n)) steps for
inputs of size n.

DSPACE(s(n)) the set of problems computable
by a deterministic TM using O(s(n)) cells for
inputs of size n.

NSPACE(s(n)) the set of problems computable
by a non-deterministic TM using O(s(n)) cells
for inputs of size n.

15

Some complexity classes

L = DSPACE(log(n)) logarithmic space (logspace)

NL = NSPACE(log(n)) nondeterministic logspace

P =
⋃∞
k=1DTIME(nk) polynomial time

NP =
⋃∞
k=1NTIME(nk) nondeterministic poly-

nomial time

PSPACE =
⋃∞
k=1DSPACE(nk) =

=
⋃∞
k=1NSPACE(nk)

EXPTIME =
⋃∞
k=1DTIME(2n

k
)

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

NL
= PSPACE
16

SO∃ ⊆ NP

A very informal argument that for every SO∃
formula ψ there is a non-deterministic TM which
given a structure of size n answers whether it
satisfies ψ in O(nk) steps:

1. Fix ψ = ∃Xr11 . . . ∃X
rk
k φ. Recall that φ is like a

first order formula only it may contain atomic
subformulas of the form Xrii (x1, . . . , xri)) as
well as atomic subformulas of the form
Rm(x1, . . . , xm).

2. Given a structure A of size n, and some fixed
interpretations of Xr11 , . . . , X

rk
k , checking

whether A |= φ takes polynomial time in the
size of n. For example, to evaluate
∃x1∃x2∃x3R(x1, x2, x3), we need to check
all triples of elements from A: the polynomial is
n3.

3. An NP machine can ‘guess’ an interpretation of
relational variables and then evaluate φ in
polynomial time.

17

NP ⊆ SO∃

We have shown that if a problem (a property of
relational structures) can be expressed in SO∃,
then it can be solved (evaluated) in NP.

To prove the other direction (if some problem is in
NP, it can be expressed in SO∃), we reason as
follows.

1. Suppose a problem X is in NP

2. Then there is an NP machineM which
accepts only structures in X

3. Let us describeM by an SO∃ formula φM so
that a structure A ∈ X (A is accepted byM)
iff A |= φM .

4. This means that we have written a SO∃
formula which is true only on structures in X,
that is the problem X is expressible in SO∃.

18

EncodingM by a formula 1

It is crucial thatM is an NP machine, that is, for an
input of size n M makes at most nk steps and
uses at most nk cells on the tape.

Assumptions made in the proof:

• M never visits the cells to the left of the input;

• input in in alphabet {0,1, } ⊆ Σ (Σ is the
work alphabet ofM)

• Z is the set of states ofM . The halting state
s+ is reached always in the leftmost position
and reading a blank symbol (this is just for
convenience; any machine can be made to do
this: instead of accepting, first go to the left,
erase the symbol there and then accept).

• after the machine accepts, it cycles in
accepting state;

19

EncodingM by a formula 2

Configuration ofM at every step in the
computation is given by:

• what is the state ofM ;

• which cell is the head scanning;

• which symbol is in every of the nk cells on the
tape used in the computation.

Configurations ofM can be described by strings of
length nk over the alphabet Γ = Σ ∪ (Z × Σ):

a1 a2 . . . ai−1 (z, ai) ai+1 . . . ank

says that the tape contents

a1 a2 . . . ai−1 ai ai+1 . . . ank

the head is in cell i and the state is z.

20

EncodingM by a formula 3

M ’s accepting computation on an input which is an
encoding of structure A with domain of size n
(encoding is longer, since an r-ary relation will be
encoded as a string of length nr. We assume that
the sum of arities of all relations is less than k) is
represented by a nk × nk matrix:

(s0, a1) a2 . . . am

.

.

.

(s+,) b2 bnk

21

EncodingM by a formula 4

To encode this computation, we should be able to
encode every string (which Γ symbol is at each
position) and the transition relation (how next
configuration is computed).

Then the formula φM will say that the initial
configuration is such and such, each subsequent
configuration is in the transition relation, and the
nkth configuration is an accepting one.

22

EncodingM by a formula 5

To encode a configuration, we should be able to
encode nk different positions. We cannot use nk

variables because then our formula will depend on
the size of the structure. Instead we use k-ary
tuples to encode different positions. If a structure
has n elements, there are nk different tuples.

If we have a total order relation < we can define a
successor relation S1:

S1(x, y) = (x < y)∧∀z((x < z)∧(y
= z) → (y < z))

Similarly, we can define a successor relation Sk
between k-tuples in the lexicographic ordering of
tuples.

x1...xn < y1...yn if
x1...xi = y1...yi and xi+1 < yi+1

for some i where 0 ≤ i ≤ n− 1.

23

EncodingM by a formula 6

For every symbol a ∈ Γ we introduce a new 2k-ary
relational symbol Pa.

Pa(x1, ..., xk, y1, ..., yk) is intended to be true if
and only if symbol a is in position
(x1, ..., xk, y1, ..., yk) in the matrix (x̄= x1, . . . , xk
encodes the cell number, ȳ = y1, . . . , yk the
configuration or time step number).

Now we can express instructions. For example, if
there is an instruction which says that ‘in state s
reading 0, replace 0 by 1, stay in the same cell and
change the state to z’, we can write

∀x̄, ȳ, ū(P(s,0)(x̄, ȳ) ∧ S(ȳ, ū) → P(s′,1)(x̄, ū))

24

EncodingM by a formula 7

In general, symbol in the position (i+ 1, j + 1) in
the matrix depends on what is at positions (i, j),
(i+ 1, j) and (i+ 2, j) and on non-deterministic
choice of instruction:

(i, j) (i+ 1, j) (i+ 2, j)

(i+ 1, j + 1)

Assuming that the machine can make only two
choices each time (harmless assumption), this can
be encoded as two transition relations ∆0 and ∆1

on symbols from Γ. ∆0 list one set of choices

a b c

d

and ∆1 the other.

We use a k-ary predicate C(y1, ..., yk) to encode
the fact that at time step y1, ..., yk an instruction
from ∆1.

25

EncodingM by a formula 8

The general form of transition relation for
configurations (provided we are inside the matrix) is

∀x̄, ȳ, x̄′, x̄′′, ȳ′ ∧

(a,b,c,d)∈∆1

(Pa(x̄, ȳ) ∧ Pb(x̄′, ȳ) ∧ Pc(x̄′′, ȳ)∧

∧S(x̄, x̄′) ∧ S(x̄′, x̄′′) ∧ S(ȳ, ȳ′)∧

∧C(ȳ) → Rd(x̄′, ȳ′)))

26

EncodingM by a formula 9

We also need to be able to encode the first time
moment/cell position (least element in the ordering
of k-tuples) and last time moment/cell position (the
greatest element, or nk).

To do this, it is enough to define a unary relation
Min which holds of the least element in < and
Max which holds of the greatest. Then the least
tuple in the ordering of K-tuples is going to have all
k elements inMin, same for the greatest tuple and
Max.

27

EncodingM by a formula 10

Finally, φM is going to be of the form

∃ < ∃Min ∃Max ∃ Sk∃ Pa1 . . . ∃ Pag∃ C ψ

where a1, . . . ag are all the symbols in Γ and ψ
contains

• definitions of <,Min,Max, and Sk;

• encodings of instructions;

• description of the start configuration

• description of the nkth configuration which has
state s+:

∃x̄∃ȳ(∧

xi

Min(xi)∧
∧

yi

Max(yi)∧P(s+,)(x̄, ȳ))

28

