Hilbert's 10th problem

Thorsten Altenkirch

1900
Paris International
Congress
Hilbert proposed 23 outstanding problems in Mathematics

Hilbert's problems

-1a Is there a transfinite number between that of a denumerable set and the numbers of the continuum? Independent, Cohen 1963
1b Can the continuum of numbers be considered a well ordered set?

Yes, Zermelo 1904 using the Axiom of Choice which is independent, Fraenkel 1925
2. Can it be proven that the axioms of logic are consistent? No, Gödel 1931
8. Prove the Riemann hypothesis. Still open
10. Does there exist a universal algorithm for solving Diophantine equations? Topic today

Diophantine equations

Are there solutions $x, y \in \mathbb{Z}$

$$
a x+b y=1
$$

for $a, b \in \mathbb{Z}-\{0\}$
$a=10, b=21$, yes, $x=-2, y=1$
$a=6, b=10$, no
In general?

Relatively Prime

Every number can be (uniquely) represented as a product of primes, e.g.

$$
\begin{aligned}
6 & = \\
10 & = \\
21 & =
\end{aligned}
$$

Two numbers are relatively prime, iff the lists of primes is disjoint.
10 and 21 are relatively prime.
6 and 10 are not relatively prime.
$a x+b y=1$ has integer solutions, iff a and b are relatively prime.

Undecidability

Turing, 1930: The problem Halt to decide whether a given pro-
gram (Turing machine) halts is undecidable, i.e it cannot be
solved by any program (Turing machine)

Consider Diophantine equations made up from \times and + . Is there a computer program which decides $\operatorname{Dioph}(\mathbb{Z})$?
Given an equation in $\operatorname{Dioph}(\mathbb{Z})$ the program would answ yes if there is a solution
no if there is no solution.

Yuri Matiyasevich (1947)

Eliminating \wedge

Julia Roberts

1971

Matiyasevich shows that Halt $\leq_{m} \operatorname{Dioph}(\mathbb{Z})$

Hence, the answer to Hilbert's 10th is negative

ExpDioph

Consider Diophantine equations made up from \times and + and x^{y}
We will show: $\operatorname{ExpDioph}(\mathbb{Z})$ is undecidable.
By reducing it to the Halting problem for register machines.

Halt
$\leq_{\text {Roberts }}$ ExpDioph \mathbb{Z}
\leq Matiyasevich $\operatorname{Dioph}(\mathbb{Z})$

Prop: A conjunction of 2 equations

$$
\begin{aligned}
f(x, y) & =0 \\
\wedge g(x, y) & =0
\end{aligned}
$$

can be reduced to one.
Use $f(x, y)^{2}+g(x, y)^{2}=0$.
This also works for n equations (and m variables).

$\operatorname{Dioph}(\mathbb{N}) \leq_{m} \operatorname{Dioph}(\mathbb{Z})$

Lagrange: Every natural number can be written as the sum of four squares.

$$
\begin{gathered}
\exists_{x, y \in \mathbb{N}} f(x, y)=0 \\
\Longleftrightarrow
\end{gathered}
$$

$\exists_{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4} \in \mathbb{Z}} f\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}, y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}\right)=0$

Eliminating \vee

Prop: A disjunction of 2 equations

$$
\begin{aligned}
f(x, y) & =0 \\
\vee g(x, y) & =0
\end{aligned}
$$

can be reduced to one.
Use $f(x, y) g(x, y)=0$.

$$
0
$$

This also works for n equations (and m variables).

Eliminating negative numbers

$\operatorname{Dioph}(\mathbb{Z}) \simeq_{m} \operatorname{Dioph}(\mathbb{N})$
$\operatorname{Dioph}(\mathbb{Z}) \leq_{m} \operatorname{Dioph}(\mathbb{N})$

$$
\begin{gathered}
\exists_{x, y \in \mathbb{Z}} f(x, y)=0 \\
\Longleftrightarrow \\
\exists_{x, y \in \mathbb{N}} f(x, y)=0 \vee f(-x, y)=0 \\
\vee f(x,-y)=0 \vee f(-x,-y)=0
\end{gathered}
$$

Rest of the talk

We are going to show that Halt $\leq_{m} \operatorname{ExpDioph}(\mathbb{N})$. Here Halt is the Halting problem for Register machines. Hence we have shown that $\operatorname{ExpDioph}(\mathbb{Z})$ is undecidable. We believe Matiyasevich that $\operatorname{ExpDioph}(\mathbb{Z}) \leq_{m} \operatorname{Dioph}(\mathbb{Z})$ or read his paper.

Register machines

Instructions

k registers: $R_{1}, R_{2}, \ldots R_{k}$ with values in \mathbb{N}. Program:

1	$:$	A_{1}
2	$:$	A_{2}
	\vdots	
m	$:$	A_{m}

What are the possible instructions A_{i} ?
$R_{j}:=0$

1 : IF $R_{j}=0$ GOTO 4
2 : DEC R_{j}
3 : Goto 1
4 : ...

- INC R_{j} (and DEC R_{j}) increments (decrements) register R_{j} by one.
- Gotol

Goto line l.

- IF $R_{j}=0$ GOTO l

Goto line l, if R_{j} is 0

- halt

Ends the program.

$$
R_{i}:=R_{j}
$$

The Halting problem

The dominance relation

Given a register machine started with all registers 0 , will the machine stop?
We are going to constract a set of equations in $\operatorname{ExpDioph}(\mathbb{N})$ which has a solution iff the machine stops.

Def.: $x \leq y \Longleftrightarrow$ the i th bit of $x \leq$ the i th bit of x $5 \unlhd 7$, because $5=101_{2}, 7=111_{2}$
$5 \notin 6$, because $5=101_{2}, 6=110_{2}$
We will see: \leq is definable in $\operatorname{ExpDioph}(\mathbb{N}$

First equations

B the largest integer, $B=2^{K}$
S the number of steps until HALT
$W_{j} \quad$ Values of register R_{j}
$|\underbrace{W_{j 0}}_{K}| \underbrace{W_{j 1}}_{K}|\cdots| \underbrace{W_{j S}}_{K} \mid$
$N_{i} \quad$ Sequence number for instruction A_{i}
$|\underbrace{N_{i 0}}_{K}| \underbrace{N_{i 1}}_{K}|\cdots| \underbrace{N_{i S}}_{K} \mid$
$N_{j} s=1 \Longleftrightarrow A_{i}$ is executed at time s
$N_{j}=0$ otherwise.

Important Variables

More equations

- Exactly one instruction is executed at any time.

$$
N_{1}+N_{2}+\cdots+N_{m}=T
$$

$$
\begin{gathered}
T=\overbrace{\underbrace{0 \ldots 01}_{K}|\underbrace{0 \ldots 01}_{K}| \ldots|\underbrace{0 \ldots 01}_{K}|}^{S} \\
1+(B-1) T=B^{S+1} \\
N_{i s} \in\{0,1\} \\
N_{i} \unlhd T
\end{gathered}
$$

- The program starts with the first instruction.

$$
1 \unlhd N_{1}
$$

- The last instruction is $A_{m}=$ HALT.

$$
B^{S} \unlhd N_{m}
$$

- Initially all registers are 0.

$$
W_{j} \unlhd B^{S+1}-B
$$

$i: \mathbf{G O T O} j$

$$
B N_{i} \unlhd N_{j}
$$

Also for $i: \operatorname{INC} R_{j}, i: \operatorname{DEC} R_{j}$ we add

$$
B N_{i} \unlhd N_{i+1}
$$

INC,DEC

$$
\begin{gathered}
I_{j}=\left\{i \mid i: \operatorname{INC} R_{j}\right\} \\
D_{j}=\left\{i \mid i: \operatorname{DEC} R_{j}\right\} \\
W_{j}=B\left(W_{j}+\Sigma_{i \in I_{j}} N_{i}-\Sigma_{i \in D_{j}} N_{i}\right.
\end{gathered}
$$

Back to \unlhd

The next step is either $i+1$ or l

$$
B N_{i} \unlhd N_{l}+N_{i+1}
$$

To test $R_{j}=0$:

$$
B N_{i} \unlhd N_{i+1}+B T-2 W_{j}
$$

$$
\begin{aligned}
& \text { What about }\binom{y}{x} \boldsymbol{?} \\
m= & \binom{n}{k} \\
\Longleftrightarrow & \exists u, v, w \cdot u=2^{n}+1 \wedge v<u^{k} \wedge m<u \\
& \wedge(1+u)^{n}=w u^{k+1}+m u^{k}+v
\end{aligned}
$$

