David Hilbert (1862-1943)

Hilbert's 10th problem

Thorsten Altenkirch

1900 Paris International Congress

Hilbert proposed 23 outstanding problems in Mathematics

Hilbert's problems

- -1a Is there a transfinite number between that of a denumerable set and the numbers of the continuum? Independent, Cohen 1963
- **1b** Can the continuum of numbers be considered a well ordered set?

Yes, Zermelo 1904 using the Axiom of Choice which is independent, Fraenkel 1925

- Can it be proven that the axioms of logic are consistent? No, Gödel 1931
- 8. Prove the Riemann hypothesis. Still open
- 10. Does there exist a universal algorithm for solving Diophantine equations? Topic today

Diophantine equations

xample

Are there solutions $x, y \in \mathbb{Z}$

ax + by = 1

for
$$a, b \in \mathbb{Z} - \{0\}$$

 $a = 10, b = 21$, yes, $x = -2, y = 1$
 $a = 6, b = 10$, no

In general?

Hilbert's 10th problem - p.1/3

Hilbert's 10th pr

Relatively Prime

 Every number can be (uniquely) represented as a product of primes, e.g.

$$6 = 10 = 21 = 100$$

Def.: Two numbers are relatively prime, iff the lists of primes is disjoint.

10 and 21 are relatively prime.

6 and 10 are not relatively prime.

Prop.: ax + by = 1 has integer solutions, iff *a* and *b* are relatively prime.

Hilbert 10th, revisited

Consider Diophantine equations made up from \times and +. $\textbf{Dioph}(\mathbb{Z})$

Is there a computer program which decides $Dioph(\mathbb{Z})$?

Given an equation in $Dioph(\mathbb{Z})$ the program would answ

- yes if there is a solution
- no if there is no solution.

Hilbert's 10th pr

Undecidability

Turing, 1930: The problem **Halt** to decide whether a given program (Turing machine) halts is undecidable, i.e it cannot be solved by any program (Turing machine).

Reduction

To show that a problem P is undecidable, we construct a reduction **Halt** $\leq_m P$, that is a computer program which translates instances of the halting problem into instances of P. Why does this work ?

Hilbert's 10th problem – p 5/3

Yuri Matiyasevich (1947)

1971 Matiyasevich shows that Halt $\leq_m \text{Dioph}(\mathbb{Z})$

Hence, the answer to Hilbert's 10th is negative

Julia Roberts

Halt \leq_{Roberts} ExpDioph \mathbb{Z} $\leq_{\text{Matiyasevich}}$ Dioph (\mathbb{Z})

ExpDioph

Consider Diophantine equations made up from \times and + and x^y ExpDioph(\mathbb{Z}) We will show: ExpDioph(\mathbb{Z}) is undecidable.

By reducing it to the Halting problem for register machines.

Eliminating \wedge

Prop: A conjunction of 2 equations

 $\begin{array}{rcl} f(x,y) &=& 0\\ \wedge & g(x,y) &=& 0 \end{array}$

can be reduced to one. How? Use $f(x,y)^2 + g(x,y)^2 = 0$.

This also works for n equations (and m variables).

Hilbert's 10th problem - p.9/3

Hilbert's 10th prol

Eliminating \lor

Prop: A disjunction of 2 equations

$$\begin{array}{rcl} f(x,y) &=& 0\\ \lor & g(x,y) &=& 0 \end{array}$$

can be reduced to one. How? Use f(x,y)g(x,y) = 0.

This also works for n equations (and m variables).

Eliminating negative numbers

 $\mathsf{Dioph}(\mathbb{Z}) \simeq_m \mathsf{Dioph}(\mathbb{N})$ $\mathsf{Dioph}(\mathbb{Z}) \leq_m \mathsf{Dioph}(\mathbb{N})$

How?

 $\exists_{x,y \in \mathbb{Z}} f(x,y) = 0$ \iff $\exists_{x,y \in \mathbb{N}} f(x,y) = 0 \lor f(-x,y) = 0$ $\lor f(x,-y) = 0 \lor f(-x,-y) = 0$

Hilbert's 10th prol

Rest of the talk

We are going to show that $\text{Halt} \leq_m \text{ExpDioph}(\mathbb{N})$. Here Halt is the Halting problem for Register machines. Hence we have shown that $\text{ExpDioph}(\mathbb{Z})$ is undecidable. We believe Matiyasevich that $\text{ExpDioph}(\mathbb{Z}) \leq_m \text{Dioph}(\mathbb{Z})$ or read his paper.

$$\mathbf{Dioph}(\mathbb{N}) \leq_m \mathbf{Dioph}(\mathbb{Z})$$

Hint

Lagrange: Every natural number can be written as the sum of four squares.

$$\exists_{x,y \in \mathbb{N}} f(x,y) = 0 \\ \Longleftrightarrow \\ \exists_{x_1,x_2,x_3,x_4,y_1,y_2,y_3,y_4 \in \mathbb{Z}} f(x_1^2 + x_2^2 + x_3^2 + x_4^2, y_1^2 + y_2^2 + y_3^2 + y_4^2) = 0$$

Hilbert's 10th problem - p.13/3

Register machines

k registers: $R_1, R_2, \ldots R_k$ with values in \mathbb{N} . Program:

What are the possible instructions A_i ?

2 : DEC R_i 3 : GOTO 1

4 : ...

Instructions

- INC R_i (and DEC R_i) increments (decrements) register R_i by one.
- GOTO *l* Goto line *l*.
- IF $R_i = 0$ Goto lGoto line l, if R_i is 0
- J HALT Ends the program.

The Halting problem

Given a register machine started with all registers 0, will the machine stop?

We are going to constract a set of equations in $ExpDioph(\mathbb{N})$

which has a solution iff the machine stops.

The dominance relation

Def.: $x \leq y \iff$ the *i*th bit of $x \leq$ the *i*th bit of x $5 \leq 7$, because $5 = 101_2, 7 = 111_2$ $5 \leq 6$, because $5 = 101_2, 6 = 110_2$

We will see: \trianglelefteq is definable in **ExpDioph**(\mathbb{N})

Important Variables

- *B* the largest integer, $B = 2^K$
- S the number of steps until HALT
- W_j Values of register R_j

$$|\underbrace{W_{j0}}_{K}|\underbrace{W_{j1}}_{K}|\dots|\underbrace{W_{jS}}_{K}|$$

 N_i Sequence number for instruction A_i

 $|\underbrace{N_{i0}}_{K}|\underbrace{N_{i1}}_{K}|\dots|\underbrace{N_{iS}}_{K}|$ $N_{js} = 1 \iff A_{i} \text{ is executed at time } s$ $N_{i} = 0 \text{ otherwise.}$ Hilbert's 10th prol

First equations

B > k, B > m, B > 2S

But these are not equations?

 $B = k + c_1, B = m + c_2, B = 2S + c_3$

Hilbert's 10th problem - p 21/3

More equations

Exactly one instruction is executed at any time.

 $N_1 + N_2 + \dots + N_m = T$

• The program starts with the first instruction.

 $1 \leq N_1$

• The last instruction is $A_m = \text{HALT}$.

 $B^S \leq N_m$

Initially all registers are 0.

$$W_j \trianglelefteq B^{S+1} - B$$

Hilbert's 10th prol

INC,DEC

$$I_j = \{i \mid i : \text{INC } R_j\}$$
$$D_j = \{i \mid i : \text{DEC } R_j\}$$
$$W_j = B(W_j + \sum_{i \in I_j} N_i - \sum_{i \in D_j} N_i$$

i : GOTO j

 $BN_i \leq N_{i+1}$

Hilbert's 10th problem - p.25/31

$i: \mathbf{IF} R_j = 0$ goto l

The next step is either i + 1 or l

$$BN_i \leq N_l + N_{i+1}$$

To test $R_j = 0$:

$$BN_i \leq N_{i+1} + BT - 2W_j$$

Back to \leq

Theorem (Kummer,Lucas):
$$x \leq y \iff \begin{pmatrix} y \\ x \end{pmatrix}$$
 is odd
Hence we replace $x \leq y$ by

$$\left(\begin{array}{c} y\\ x \end{array}\right) = 2c + 1$$

Hilbert's 10th prol

What about $\begin{pmatrix} y \\ x \end{pmatrix}$? $m = \begin{pmatrix} n \\ k \end{pmatrix}$

$$\begin{array}{l} \langle \kappa \rangle \\ \Leftrightarrow \exists u, v, w.u = 2^n + 1 \land v < u^k \land m < u \\ \land (1+u)^n = wu^{k+1} + mu^k + v \end{array}$$