Monads and More: Part 4

Tarmo Uustalu, Tallinn

Nottingham, 14-18 May 2007

Coeffectful computation and comonads

For coeffectful notions of computation, we have a comonad (D, ε, δ) on the base category \mathcal{C} of pure functions such that the category of impure functions is $\operatorname{CoKI}(D)$, i.e.,

- an impure function between object A and B of \mathcal{C} can be viewed as a map $A \rightarrow^{D} B$ of $\operatorname{CoKI}(D)$, i.e., a map $D A \rightarrow B$ of \mathcal{C},
- the identity impure functions are id ${ }^{D}={ }_{\mathrm{df}} \varepsilon$,
- and the composition of impure functions is $\ell \circ^{D} k={ }_{d f} \ell \circ k^{\dagger}$.

Pure functions are a special case of impure functions via the inclusion $J: \mathcal{C} \rightarrow \mathbf{C o K I}(D)$, given by $J f={ }_{\mathrm{df}} f \circ \varepsilon$.
Intuition: $D A$ - values from A in a context.
Simplest example: $D A={ }_{\mathrm{df}} A \times E$ for dependency on environment, but $\operatorname{CoKI}(D) \cong \mathbf{K I}(T)$ for $T A={ }_{\mathrm{df} f} E \Rightarrow A$.

Dataflow computations

Dataflow computation $=$ discrete-time signal transformations
$=$ stream functions.
The output value at a time instant (stream position) is determined by the input value at the same instant (position) plus further input values.

Example dataflow programs

$$
\begin{aligned}
\text { pos } & =0 \text { fby }(\text { pos }+1) \\
\text { sum } x & =x+(0 \text { fby }(\operatorname{sum} x)) \\
\text { fact } & =1 \text { fby }(\text { fact } *(\text { pos }+1)) \\
\text { fibo } & =0 \text { fby }(\text { fibo }+(1 \text { fby fibo }))
\end{aligned}
$$

pos	0	1	2	3	4	5	6	\ldots
sum pos	0	1	3	6	10	15	21	\ldots
fact	1	1	2	6	24	120	720	\ldots
fibo	0	1	1	2	3	5	8	\ldots

We want to consider functions $\operatorname{Str} A \rightarrow \operatorname{Str} B$ as impure functions from A to B.

Streams are naturally isomorphic to functions from natural numbers: $\operatorname{Str} A={ }_{\mathrm{df}} \nu X . A \times X \cong \mathrm{Nat} \Rightarrow A$.
General stream functions $\operatorname{Str} A \rightarrow \operatorname{Str} B$ are thus in natural bijection with maps $\operatorname{Str} A \times \mathrm{Nat} \rightarrow B$.

Comonad for general stream functions

- Functor:

$$
D A={ }_{\mathrm{df}}(\mathrm{Nat} \Rightarrow A) \times \mathrm{Nat} \cong \operatorname{List} A \times \operatorname{Str} A
$$

- Input streams with past/present/future:

$$
a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}, a_{n+1}, a_{n+2}, \ldots
$$

- Counit:

$$
\begin{array}{cc}
\varepsilon_{A}: \quad(\text { Nat } \Rightarrow A) \times \text { Nat } & \rightarrow A \\
(a, n) & \mapsto a(n)
\end{array}
$$

- Co-Kleisli extension:

$$
\begin{array}{cc}
k:(\text { Nat } \Rightarrow A) \times \text { Nat } \rightarrow B \\
k^{\star}:(\text { Nat } \Rightarrow A) \times \text { Nat } & \rightarrow(\text { Nat } \Rightarrow B) \times \text { Nat } \\
(a, n) & \mapsto(\lambda m k(a, m), n)
\end{array}
$$

Comonad for causal stream functions

- Functor:

$$
D A={ }_{\mathrm{df}} \text { NEList } \cong \operatorname{List} A \times A
$$

- Input streams with past and present but no future
- Counit:

$$
\begin{array}{cc}
\varepsilon_{A}: & \text { NEListA }
\end{array} \quad \rightarrow A
$$

- Co-Kleisli extension:

$k: N E L i s t A \rightarrow B$				
$k^{\star}:$	NEList A	\rightarrow NEList B		
	$\left[a_{0}, \ldots, a_{n}\right]$	\mapsto		

Comonad for anticausal stream functions

- Input streams with present and future but no past
- Functor:

$$
D A={ }_{\mathrm{df}} \operatorname{Str} A \cong A \times \operatorname{Str} A
$$

Relabelling tree transformations

Let $F: \mathcal{C} \rightarrow \mathcal{C}$. Define Tree $A={ }_{\mathrm{df}} \mu X . A \times F X$. We are interested in functions Tree $A \rightarrow$ Tree B.
(Alt. we can define $\operatorname{Tree}^{\infty} A={ }_{\mathrm{df}} \nu X . A \times F X$ and interest ourselves in functions $\operatorname{Tree}^{\infty} A \rightarrow \operatorname{Tree}^{\infty} B$.)
Comonad for general relabelling functions:

$$
D A={ }_{\mathrm{df}} \operatorname{Path} A \times \operatorname{Tree} A
$$

(Huet's zipper) where Path $A={ }_{\mathrm{df}} \mu X .1+A \times F^{\prime}($ Tree $A) \times X$.
Comonad for bottom-up relabelling functions:

$$
D A={ }_{\mathrm{df}} \operatorname{Tree} A
$$

Co-Kleisli categories and Cartesian closed structure

Let D be a comonad on a Cartesian closed cat. \mathcal{C}.
Since J is right adjoint and preserves limits, $\operatorname{CoKI}(D)$ has products. Explicitly, we can define

$$
\begin{array}{rll}
A \times{ }^{D} B & =_{\mathrm{df}} & A \times B \\
\pi_{0}^{D} & =_{\mathrm{df}} & \text { fst } \circ \varepsilon \\
\pi_{1}^{D} & =_{\mathrm{df}} & \text { snd } \circ \varepsilon \\
\left\langle k_{0}, k_{1}\right\rangle^{D} & ={ }_{\mathrm{df}} & \left\langle k_{0}, k_{1}\right\rangle
\end{array}
$$

If D is strong/lax symmetric semimonoidal wrt. $(1, \times)$, i.e., comes with a nat. iso./transf. $\mathrm{m}: D A \times D B \rightarrow D(A \times B)$, then we can also define

$$
\begin{array}{rll}
A \Rightarrow^{D} B & =_{\mathrm{df}} & D A \Rightarrow B \\
\mathrm{ev}^{D} & =_{\mathrm{df}} & \text { ev } \circ\langle\varepsilon \circ D \mathrm{fst}, D \mathrm{snd}\rangle \\
\Lambda^{D}(k) & =_{\mathrm{df}} & \Lambda(k \circ \mathrm{~m})
\end{array}
$$

$$
D((D A \Rightarrow B) \times A) \xrightarrow{\langle\varepsilon \circ D \mathrm{fst}, D \mathrm{snd}\rangle}(D A \Rightarrow B) \times D A \xrightarrow{\mathrm{ev}} B
$$

$$
D C \times D A \xrightarrow{\mathrm{~m}} D(C \times A) \xrightarrow{k} B
$$

$$
D C \xrightarrow{\Lambda(k \circ \mathrm{~m})} D A \Rightarrow B
$$

Using a strength (if available) is not a good idea: We have no multiplication

$$
D C \times D A \xrightarrow{\mathrm{sl}} D(C \times D A) \xrightarrow{D \mathrm{sr}} D D(C \times A) \xrightarrow{?} D(C \times A)
$$

and applying ε or $D \varepsilon$ gives a solution where the order of arguments of a function is important and coeffects do not combine:

$$
D C \times D A \xrightarrow{\text { id } \times \varepsilon} D C \times A \xrightarrow{\mathrm{sl}} D(C \times A)
$$

or

$$
D C \times D A \xrightarrow{\varepsilon \times \mathrm{id}} C \times D A \xrightarrow{\mathrm{sr}} D(C \times A)
$$

If D is strong semimonoidal (in which case it is automatically strong symmetric semimonoidal), then $A \Rightarrow^{D}$ - is right adjoint to $-\times^{D} A$ and hence \Rightarrow^{D} is an exponent functor:

$$
\frac{\frac{D(C \times A) \rightarrow B}{\overline{D C \times D A \rightarrow B}}}{\overline{D C \rightarrow D A \Rightarrow B}}
$$

This is the case, e.g., if $D A={ }_{\mathrm{df}} \nu X . A \times(K \Rightarrow X)$ for some K (e.g., $D A={ }_{\mathrm{df}} \operatorname{Str} A$).

More typically, D is only lax symmetric semimonoidal.
Then it suffices to have m satisfying $\mathrm{m} \circ \Delta=D \Delta$, where $\Delta=\langle i d$, id $\rangle: A \rightarrow A \times A$ is part of the comonoid structure on the objects of \mathcal{C}, to get that $m \circ\langle D f s t, D$ snd $\rangle=$ id and that \Rightarrow^{D} is a weak exponent operation on objects. It is not functorial (not even in each argument separately).

Partial uniform parameterized fixpoint operator

 Let $F: \mathcal{C} \rightarrow \mathcal{C}$. Define $D A={ }_{\mathrm{df}} \nu Z . A \times F Z$.Call a coKleisli map $k: A \times B \rightarrow^{D} B$ guarded if for some k^{\prime} we have

$$
\begin{aligned}
& (A \times B) \times F D(A \times B) \xrightarrow{\text { fstxid }} A \times F D(A \times B)
\end{aligned}
$$

For any guarded $k: A \times B \rightarrow^{D} B$, there is a unique map fix $(k): A \rightarrow^{D} B$ satisfying

fix is a partial Conway operator defined on guarded maps, i.e., besides the fixpoint property, for any guarded $k: A \times{ }^{D} B \rightarrow^{D} B$,

$$
\operatorname{fix}(k)=k \circ^{D}\left\langle\mathrm{id}^{D}, \operatorname{fix}(k)\right\rangle^{D}
$$

it satisfies naturality in A, dinaturality in B, and the diagonal property: for any guarded $k: A \times^{D} B \times^{D} B \rightarrow^{D} B$,

$$
\operatorname{fix}\left(k \circ^{D}\left(\mathrm{id}^{D} \times^{D} \Delta^{D}\right)\right)=\operatorname{fix}(\operatorname{fix}(k))
$$

Wrt. pure maps, fix is also uniform (i.e., strongly dinatural in B instead of dinatural), i.e., for any guarded $k: A \times{ }^{D} B \rightarrow^{D} B, \ell: A \times{ }^{D} B^{\prime} \rightarrow^{D} B^{\prime}$ and $h: B \rightarrow B^{\prime}$

$$
J h \circ^{D} k=\ell \circ^{D}\left(\mathrm{id}^{D} \times^{D} \mathrm{Jh}\right) \quad \Longrightarrow \quad J h \circ^{D} \operatorname{fix}(k)=\operatorname{fix}(\ell)
$$

Comonadic semantics

As in the case of monadic semantics, we interpret the lambda-calculus into $\operatorname{CoKI}(D)$ in the standard way, getting

$$
\begin{aligned}
& \llbracket A \times B \rrbracket^{D}={ }_{\mathrm{df}} \quad \llbracket A \rrbracket^{D} \times^{D} \llbracket B \rrbracket^{D} \quad=\llbracket A \rrbracket^{D} \times \llbracket B \rrbracket^{D} \\
& \llbracket A \Rightarrow B \rrbracket^{D}={ }_{\mathrm{df}} \quad \llbracket A \rrbracket^{D} \Rightarrow^{D} \llbracket B \rrbracket^{D} \quad=D \llbracket A \rrbracket^{D} \Rightarrow \llbracket B \rrbracket^{D} \\
& \llbracket(\underline{x}) x_{i} \rrbracket^{D}={ }_{\mathrm{df}} \\
& \llbracket(\underline{x}) f s t(t) \rrbracket^{D}={ }_{\mathrm{df}} \\
& \pi_{i}^{D} \quad=\pi_{i} \circ \varepsilon \\
& \llbracket(\underline{x}) \operatorname{snd}(t) \rrbracket^{D}={ }_{\mathrm{df}} \\
& \pi_{0}^{D} \circ^{D} \llbracket(\underline{x}) t \rrbracket^{D} \quad=\text { fst } \circ \llbracket(\underline{x}) t \rrbracket^{D} \\
& \llbracket(\underline{x})\left(t_{0}, t_{1}\right) \rrbracket^{D}={ }_{\mathrm{df}} \\
& \left\langle\llbracket(\underline{x}) t_{0} \rrbracket^{D}, \llbracket(\underline{x}) t_{1} \rrbracket^{D}\right\rangle^{D}=\left\langle\llbracket(\underline{x}) t_{0} \rrbracket^{D}, \llbracket(\underline{x}) t_{1} \rrbracket^{D}\right\rangle \\
& \llbracket(\underline{x}) \lambda x t \rrbracket^{D}={ }_{\mathrm{df}} \quad \Lambda^{D}\left(\llbracket(\underline{x}, x) t \rrbracket^{D}\right) \quad=\Lambda\left(\llbracket(\underline{x}, x) t \rrbracket^{D} \circ \mathrm{~m}\right) \\
& \llbracket(\underline{x}) t u \rrbracket^{D}={ }_{\mathrm{df}} \mathrm{ev}^{D} \circ^{D}\left\langle\llbracket(\underline{x}) t \rrbracket^{D}, \llbracket(\underline{x}) u \rrbracket^{D}\right\rangle^{D}=\mathrm{ev} \circ\left\langle\llbracket(\underline{x}) t \rrbracket^{D},\left(\llbracket(\underline{x}) u \rrbracket^{D}\right)^{\dagger}\right\rangle \\
& \llbracket(\underline{x}) \mathrm{rec} x t \rrbracket^{D}=\mathrm{df} \quad \text { fix }{ }^{D}\left(\llbracket(\underline{x}, x) t \rrbracket^{D}\right) \quad \text { for }(\underline{x}, x) t \text { syntactically guarded }
\end{aligned}
$$

Coeffect-specific constructs are interpreted specifically.
Again, $\underline{x}: \underline{C} \vdash t: A$ implies $\llbracket(\underline{x}) t \rrbracket^{D}: \llbracket \underline{C} \rrbracket^{D} \rightarrow^{D} \llbracket A \rrbracket^{D}$, but not all equations of the lambda-calculus are validated.

Closed terms: Soundness of typing for $\vdash t: A$ says that $\llbracket t \rrbracket^{D}: 1 \rightarrow^{D} \llbracket A \rrbracket^{D}$, i.e., $D 1 \rightarrow \llbracket A \rrbracket^{D}$, so closed terms are evaluated relative to a coeffect over 1 .

In case of general or causal stream functions, this is a list over 1 (i.e., a natural number), the time elapsed.
If D is properly symmetric monoidal (e.g., Str), we have a canonical choice e: $1 \xrightarrow{\sim} D 1$.

Comonadic dataflow language semantics: The first-order language agrees perfectly with Lucid and Lustre by its semantics.

The meaning of higher-order dataflow computation has been unclear. We get a neat semantics from mathematical considerations (cf. Colaço, Pouzet's design with two flavors of function spaces).

Related linear/modal logic work

Strong symmetric monoidal comonads are central in the semantics of intuitionistic linear logic and modal logic to interpret the! and \square operators.

Linear logic: Benton, Bierman, de Paiva, Hyland; Bierman; Benton; Mellies; Maneggia; etc.

Modal logic: Bierman, da Paiva.
Applications to staged computation and semantics of names: Pfenning, Davies, Nanevski.

