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Abstract

We present a new and simple account of α-conversion suitable for formal reasoning. Our
main tool is to define α-conversion as a a structural congruence parametrized by a partial
bijection on free variables. We show a number of basic properties of substitution. e.g. that
substitution is monadic which entails all the usual substitution laws. Finally, we relate
α-equivalence classes to de Bruijn terms.

1 Introduction

When reasoning about λ-terms we usually want to identify terms which only differ
in the names of bound variables, such as λx.zx and λy.zy. We say that these terms
are α-convertible and write λx.zx ≡α λy.zy. We want that all operations on λ-terms
preserve ≡α. The first potential problem is substitution, if we naively substitute z
by x in the terms above we obtain (λx.zx)[z← x] = λx.xx and (λy.zy)[z← x] =
λy.xy but λx.xx 6≡α λy.xy. To avoid this behaviour we introduce capture avoiding
substitution:

(λx.t)[y←u] =λx′.t[x←x′][y←u]

where x′ does not occur free in u or t.

in the case x 6= y.
This solves the problem discussed before: (λx.zx)[z←x] = λv.xv and (λy.zy)[z←

x] = λv′.xv′ and indeed λv.xv ≡α λv′.xv′. Here v, v′ are arbitrary choices of variable
names — we can make sure that such variables exist by using a countably infinite
set of names.

How do we establish formally that the improved definition of substitution pre-
serves α-conversion and has some other desirable properties? The standard account
(Curry & Feys, 1958; Hindley & Seldin, 1986) defines α-conversion as structural,
transitive closure of

y /∈ FV(t)

λx.t ≡α λy.t[x←y]]
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and establish basic properties1 such as symmetry and that substitution preserves
α equivalence. (Hindley & Seldin, 1986), p. 10, remark:

The above technicalities are rather dull. But their very dullness has made them a trap
for even the most careful authors.

One possible reaction to the unexpected complexity of something as apparently
trivial as α-conversion is to ignore it. Indeed, this was the approach initially taken
in (Barendregt, 1984), only the 2nd edition contains a discussion of the topic in the
appendix (pp. 577).

Another reaction is to look for an alternative presentation of λ-terms. The clas-
sical approach are de Bruijn’s nameless dummies (de Bruijn, 1972). This approach
is suitable for formalisation, e.g. see (Altenkirch, 1993), but can get quite unwieldy
in some cases. Also it leaves open the question how de Bruijn’s terms are related to
named terms. Alternatively, Coquand suggested to introduce two different classes
of variables (bound variables and parameters), this theory is formally developed in
(McKinna & Pollack, 1993).

Yet another possibility is to move to a world where the problem disappears, this
is basically the idea behind recent work on higher order abstract syntax and related
approaches (Hofmann, 1999; Gabbay & Pitts, 1999; Fiore et al., 1999).

Somewhere orthogonal to this, Gordon and Melham suggested and investigated
an axiomatic theory to reason about α-conversion (Gordon & Melham, 1996) —
this has been formalized in HOL.

In the present note I attempt something maybe less exciting but hopeful as least
as useful: I suggest a better (I hope) way to present and reason about the classical
theory of α-conversion.

The main tool is to define a generalized version of α-conversion which also deals
with free variables and to use techniques from typed λ-calculus to reason about it.
This definition of substitution fits into the structure of a monad and by verifying
that it satisfies the equational properties of a monad (or a Kleisli triple) we are able
to show that the usual substitution laws hold. As a corollary we obtain that finite
sets of variables with substitutions as morphisms form a category. Finally, we will
discuss the relation to de Bruijn terms.

2 Terms and α-conversion

We assume as given an infinite set of variable names V with a decidable equality.
Infinity guarantees that for any finite set of names X ⊂fin V we can effectively
obtain Fresh(X) ∈ V \X.

Instead of defining a set of terms we define a family of sets Tm(X) of terms with
free variable in X ⊆fin V inductively:

x ∈ X

x ∈ Tm(X)

t, u ∈ Tm(X)

t u ∈ Tm(X)

t ∈ Tm(X ∪ {x})

λx.t ∈ Tm(X)

1 As far as I am aware it is never shown that transitivity can be eliminated from the definition
of α-conversion, which is needed to show that the relation is non-trivial.
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This definition is motivated by the view that the untyped λ-calculus is a special
case of the typed one, where one only has got one type. Hence the judgment Γ ` t : σ
turns into t ∈ Tm(X) since σ is unique and all what remains from the context Γ is
the set of names occurring in it.

The basic problem with the classical definition of α-conversion is that it doesn’t
take free variables into account — it only talks about bound variables. However,
when moving under a binder previously bound variables become free. Our solution is
to parametrize α-conversion by a partial bijection — a partial bijection R ⊆ X×Y
on finite sets of variables X,Y ⊂fin V is a relation which is a partial function and
its converse is a partial function. Or with other words it is a bijection on a subset
of X and Y .

Given R a partial bijection as above and x, y ∈ V we define the symmetric update
of R as

R(x, y) = (R \ {(x, v), (y, w) | v, w ∈ V}) ∪ {(x, y)} ∈ (X ∪ {x})× (Y ∪ {y})

It is easy to see that R(x, y) is a partial bijection.
We now define ≡Rα⊆ Tm(X) × Tm(Y ) parametrized by a partial bijection R ⊆

X × Y , inductively:

xRy

x ≡Rα y
t ≡Rα t′ u ≡Rα u′

t u ≡Rα t′ u′
t ≡R(x,y)

α u

λx.t ≡Rα λy.u

Note that we cannot replace partial bijections by bijections because of shadowing,
e.g. (λx.x)x ≡α (λy.y)x cannot be established using only bijections.

Given X,Y, Z ⊂fin V we write 1X = {(x, x) | x ∈ X} ⊆ X ×X for the identity
relation on X, which obviously is a partial bijection. Given R ⊆ X × Y and S ⊆
Y × Z we write R◦ = {(y, x) | (x, y) ∈ R} ⊆ Y × X for R’s converse and R;S =
{(x, z) | ∃y ∈ Y.(x, y) ∈ R ∧ (y, z) ∈ S} ⊆ X × Z for the relational composition of
S and Z. Both operations are closed under partial bijections. We can now establish
basic properties of update:

Lemma 1
Let X,Y, Z ⊂fin V and R ⊆ X × Y, S ⊆ Y × Z be partial bijections:

1. 1X(x, x) = 1X∪{x}
2. (R(x, y))◦ = R◦(y, x)
3. R(x, y);S(y, z) = (R;S)(x, z)

Proof
I show only 3. the other cases are even easier:

aR(x, y); S(y, z)b
⇐⇒ { definition of update and ; }

∃c.(a = x ∧ y = c ∧ z = b) ∨ (x 6= a ∧ y 6= c ∧ z 6= b ∧ aRc ∧ cSb
⇐⇒ { properties of ∃, defn of ; }

(a = x ∧ z = b) ∨ (x 6= a ∧ z 6= b ∧ aR; Sb)
⇐⇒ { definition of update }

a(R; S)(x, z)b
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Proposition 2
1. ∀t ∈ Tm(X).t ≡1X

α t

2. t ≡Rα u =⇒ u ≡R◦

α t

3. t ≡Rα u ∧ u ≡Sα v =⇒ t ≡R;S
α u

Proof
By induction over the structure of t ∈ Tm(X) using the fact that the rules defining
≡Rα are structurally deterministic. The only difficult case is λ where we have to use
the corresponding parts of lemma 1.

We now define ≡α=≡1X
α and obtain

Corollary 3
≡α is an equivalence relation, i.e. it is reflexive, symmetric, transitive.

Proof
Directly from the previous proposition.

Since we are interested in terms up to α-equivalence, we define the family of sets
of α-equivalence classes Tmα(X) = Tm(X)/ ≡α.

3 Substitution

A substitution is given by a function f ∈ X → Tm(Y ) where X,Y ⊂fin V. Given a
substitution f and x ∈ V, t ∈ Tm(Y ) we define the update

f [x, t] ∈ X ∪ {x} → Tm(Y )

= f \ {(x, u) | u ∈ Tm(Y )} ∪ {(x, t)}

A substitution can be extended to a function on terms (|f |) ∈ Tm(X) → Tm(Y ),
this extension proceeds by structural recursion over t ∈ Tm(X):

(|f |)(x) = f(x)

(|f |)(t u) = (|f |)(t) (|f |)(u)
(|f |)(λx.t) = λz.(|f [x, z]|)(t) where z = Fresh(Y )

The common case of substituting a single variable arises as a a special case, i.e.
given x ∈ V and u ∈ Tm(X) we have 1X [x, u] ∈ X ∪ {x} → X. Hence (|1X [x, u]|) ∈
Tm(X ∪{x})→ Tm(X) is the operation which replaces x by u. Given t ∈ Tm(X ∪
{x}) we write t[x = u] for (|1X [x, u]|)(t).

We are now going to verify that substitution preserves α-congruence, i.e. if we
have two substitutions f, g ∈ X → Tm(Y ) s.t. f(x) ≡α g(x) then for any t ≡α u
we have (|f |)(t) ≡α (|g|)(u).

We use the usual notation to extend relations to function spaces, i.e. fR →
Sg ⇐⇒ ∀x, x′.xRx′ =⇒ f(x)Sg(x′). Using this we can express the preservation
theorem in a general form:



α-conversion 5

Proposition 4
Given f ∈ X → Tm(Y ), g ∈ X ′ → Tm(Y ′) and partial bijections R ⊆ X ×X ′, S ⊆
Y × Y ′ we have that

fR→ (≡Sα)g

(|f |)(≡Rα )→ (≡Sα)(|g|)

Clearly, the preservation property arises as a special case by setting R = 1X and
S = 1Y .

To prove this we first need a lemma on updates:

Lemma 5
Given the assumptions of prop. 4 and z /∈ Y, z′ /∈ Y ′ we have

fR→ Sg

f [x, z]R(x, y)→≡S(z,z′)
α g[y, z′]

Proof
Simple case analysis on vR(x, y)v′.

Proof of prop. 4
The proposition is equivalent to saying that if t ≡Rα u then for all f, g, S if fR →
(≡Sα)g then f(t) ≡Sα g(u). We proceed by induction over the derivation of t ≡Rα u.

The only difficult case (as usual) is λ. Assume we have derived λx.t ≡Rα λy.u

from t ≡R(x,y)
α u. Let z = Fresh(Y ) and z′ = Fresh(Y ′).

We assume fR→ (≡Sα)g, hence by lemma 5 we have

f [x, z]R(x, y)→≡S(z,z′)
α g[y, z′]

Hence by ind.hyp. we know (|f [x, z]|)(t) ≡S(z,z′)
α (|f [y, z′]|)(u) and

(|f |)(λx.t) = λz.(|f [x, z]|)(t)
≡Sα λz′.(|f [y, z′]|)(u)
= (|g|)(λy.u)

A consequence of proposition 4 is that substitution is an operation on α-equivalence
classes, that is given f ∈ X → Tmα(Y ) then (|f |) ∈ Tmα(X)→ Tmα(Y ).

4 Substitution is monadic

To show that substitution is well behaved, i.e. laws such as

t[x←u] = t if x /∈ FV(t) (L1)

t[x←u][y←v] = t[y←v][x←u[y←v]] if x 6= y (L2)

hold, we establish that substitution is monadic:
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Proposition 6
(Tmα, η, (|−|)) is a monad, where the unit ηX ∈ X → Tmα(X) is the embedding
η(x) = x. That is, the following equations are satisfied:

1. (|ηX |) = 1Tmα(X)

2. (|f |) ◦ η = f

3. (|f |) ◦ (|g|) = (|(|f |) ◦ g|)

where g ∈ X → Tmα(Y ), f ∈ Y → Tmα(Z).

Before proving prop. 6 let’s see how it can be applied:
For L1 assume t, u ∈ Tmα(X) and x /∈ X. Now 1X [x, u] ∈ X ∪ {x} → Tmα(X)

and since X ⊆ X ∪ {x} also 1X [x = u] ∈ X → Tmα(X). However, a simple case
analysis shows that as function over X: 1X [x = u] = ηX and using 1. we have
(|1X [x, u]|)(t) = ηX(t) = t.

For L2 let x 6= y, x, y /∈ X and u ∈ Tmα(X ∪ {y}), v ∈ Tmα(X), we have
1X∪{y}[x, u] ∈ X ∪{x, y} → Tmα(X ∪{y}) and 1X [y, v] ∈ X ∪{y} → Tmα(X). By
3. we have that (|1X [y, v]|) ◦ (|1X∪{y}[x, u]|) = (|(|1X [y, v]|) ◦ 1X∪{y}[x, u]|). A simple
case analysis on z ∈ X ∪ {x, y} using L1 shows that:

((|1X [y, v]|) ◦ 1X∪{y}[x, u])(z) = (1X∪{x}[x, (|1X [y, v]|)(u)] ◦ 1X∪{x}[y, v])(z)

Indeed, all algebraic properties of substitution (substitution laws) are derivable
from prop 6 using only case analysis over variables.

To prove the proposition we observe that 2. follows directly from the definition
of substitution. To verify 1. we have to show a more general lemma.

Lemma 7
Let f ∈ X → Y be an injective function (hence it is also a partial bijection and
f ∈ X → Tmα(Y )). We have

(|f |)(t) ≡fα t

Proof
Induction over t ∈ Tm(X). I.e. consider t = λx.t′ we have

(|f |)(λx.t′) = λz.(|f [x = z]|)(t′)

where z = Fresh(X). Since x /∈ X we have that f [x = z] = f(x = z) and hence by
ind.hyp. (|f [x = z]|)(t′) ≡f(x=z)

α t′ and therefore λx.t′ ≡fα λz.(|f [x = z]|)(t′).

Proof of proposition 6
1. By Lemma 7 by setting f = ηX .
2. Immediate from the definition of (|f |).
3. We show

((|f |) ◦ (|g|))(t) ≡α (|(|f |) ◦ g|)(t)

by induction over t ∈ Tm(X). As usual the interesting case is t = λx.t′:
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((|f |) ◦ (|g|))(λx.t′)
= { defn of (|−|), where z0 = Fresh(Y ) }

(|f |)(λz0.(|g[x = z0]|)(t))
= { defn of (|−|), where z1 = Fresh(Z) }

λz1.((|f [z0 = z1]|) ◦ (|g[x = z0]|))(t′)
≡α { ind.hyp. }

λz1.(|(|f [z0 = z1]|) ◦ g[x = z0]|)(t′)
≡α { (|f [z0 = z1]|) ◦ g[x = z0] ≡α ((|f |) ◦ g)[x = z1], see below }

λz1.(|((|f |) ◦ g)[x = z1]|)(t′)
= { defn of (|−|) }

(|(|f |) ◦ g|)(λx.t′)

We have to show (|f [z0 = z1]|) ◦ g[x = z0](v) ≡α ((|f |) ◦ g)[x = z1](v): If v = x

both sides evaluate to z1, otherwise:

((|f [z0 = z1]|) ◦ g[x = z0])(v)
= { v 6= x }

(|f [z0 = z1]|)(g(v))
≡α { z0 /∈ Y , as for example 2. }

(|f |)(g(v))
= { v 6= x }

((|f |) ◦ g)[x = z1](v)

A monad gives rise to its Kleisli-category. In the case of Tmα this is the cat-
egory Tm of terms and substitutions: objects are X ⊂fin V and morphisms are
substitutions: Tm(X,Y ) = X → Tmα(Y ). The identity is given by the unit
ηX ∈ Tm(X,X) and composition by lifting, i.e. f ◦Tm g = (|f |) ◦ g. The cate-
gorical laws are a direct consequence of the monad laws (i.e. prop 6).

5 de Bruijn terms

To avoid the complications of α-conversion de Bruijn (de Bruijn, 1972) developed
a representation of terms where variables are replaced by a number indicating the
binding depth and λ-abstraction is an unary operation. E.g. the term λx.x(λy.yx)
becomes λ0(λ01).

For any n ∈ Nat we define the set Tmdb(n) of de Bruijn terms with at most n
free Variables inductively by the following rules: 2

i ∈ n

i ∈ Tmdb(n)

t, u ∈ Tmdb(n)

t u ∈ Tmdb(n)

t ∈ Tmdb(n+ 1)

λt ∈ Tmdb(n)

The idea is that the elements of Tmdb(n) can be considered as representations of
the equivalence classes of Tmα(X) where |X| ≤ n. We can make this precise, given
X ⊂fin V and an injection φ ∈ X → n, we assign to any t ∈ Tm(X) a de Bruijn

2 Here we identify n ∈ Nat with the set {i ∈ Nat | i < n}
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term tφ ∈ Tmdb(n) by

xφ = φ(x)

(tu)φ = tφuφ

(λx.t) = λtφ
+x

where

φ+x(y) =
{

0 if y = x

φ(y) + 1 otherwise

Note that φ+x is an injection, if φ is.
We want to formally establish that the −φ operation chooses a canonical repre-

sentation for each α-equivalence class:

Proposition 8
−φ is an injection between Tmα(X)→ Tmdb(n), i.e.

t ≡α u ⇐⇒ tφ = uφ

To show this we have establish the following generalisation:

Lemma 9
Given injections φ ∈ X → n, ψ ∈ Y → n we have

t ≡Rα u ⇐⇒ tφ = uψ

where R is the pullback of φ and ψ, i.e.

xRy ⇐⇒ φ(x) = ψ(y)

Proof
By induction of t ∈ Tm(X). As usual the interesting case is λ where we need the
fact that if R is given as above then

vR(x, y)w ⇐⇒ φ+x(v) = ψ+y(w)

I leave it to the reader to show that −φ preserves substitution, i.e. it maps
substitutions on named terms as given here to substitution on de Bruijn terms, e.g.
as defined in (Altenkirch & Reus, 1999).

6 Conclusions

Maybe the reader will have come to the conclusion that α-conversion isn’t easy
given the number of definitions, lemmas and propositions in this note. However, I
would translate easy as: everything works out as expected, there is no creativity
needed, no need to come up with unexpected technical lemmas. In this sense we
can conclude α-conversion is easy!

The theory presented here offers a viable alternative to the use of de Bruijn
terms or non-standard presentations of λ-terms in formal developments. All the
propositions in this paper are provable constructively, hence the development could
be formalized in a constructive metalanguage like Martin-Löf’s Type Theory.
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