
Definable Quotients in Type Theory

Thorsten Altenkirch1, Thomas Anberrée2, and Nuo Li2

1 School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton
Road, Nottingham, NG8 1BB, UK

2 School of Computer Science, University of Nottingham, Ningbo Campus, 199
Taikang East Road, Ningbo, 315100, China

Abstract. In Type Theory, a quotient set is a set representing a setoid.
Categorically, this corresponds to the concept of an exact coequalizer.
In the present paper we consider the case of a definable quotients, where
the quotient set arises as the codomain of a normalization function —
this corresponds to the notion of a split coequalizer. We give a number
of examples of definable quotients and notice that it is preferable to use
the setoid structure when reasoning about the quotient set. We also show
that there are examples where setoids cannot be represented in ordinary
Type Theory such as the real numbers or the partiality monad under the
assumption that local continuity is admissible in Type Theory.

1 Introduction

In Intensional Type Theory [11], quotient types are unavailable and we use
setoids [4] instead. Setoids are just sets together with an equivalence relation.
However, the disadvantage of using setoids is that we have now to lift any set-
based operation on setoids. E.g. we need lists as an operation on setoids and not
just on sets. Moreover, setoids are not safe in the sense that any consumer of a
setoid may access the underlying representation. One way out is to use a Type
Theory which supports genuine quotients such as the forthcoming Epigram 2
system (based on [3]). However, in many cases this is not necessary because the
quotient is actually definable. This is the subject of the current paper.

An example is the case of integers. We can define integers as a setoid, namely
as the setoid given by pairs of natural numbers Z0 = N×N, where the equivalence
relation identifies pairs representing the same difference, that is (a, b) ∼ (c, d) iff
a + d = c + b. However, as it is well known, using a setoid here is unnecessary;
we can use a set, namely N +N where the first injection represents the positive
numbers including 0 whereas the second injection represents the proper negative
numbers. We can now define operations like addition and multiplication and show
algebraic properties, such as verifying that the structure is a ring. However, this
is quite complicated and uses many unnecessary case distinctions. E.g. try to
prove distributivity within this setting! It is easier to define the operations on
the setoid and the required algebraic properties are direct consequences of the
semiring structure of the natural numbers.

Hence we propose to use both the setoid and the associated set, but to use
the setoid structure to define operations on the quotient set and to reason about

it. In the present paper we introduce the formal framework to do this, i.e. we give
the definitions of quotient as well as definable quotients and show the equivalence
of alternative definitions of quotients. We also verify that quotients correspond
precisely to the notion of coequalizers, and that an additional condition, exact-
ness, can equivalently be expressed in Type Theory or in category theory. We
present a number of examples for definable quotients which are the base of a
library of definable quotients.

However, not all setoids can be represented as definable quotients. Under the
(reasonable) assumption of local continuity, we show that the real numbers are
not a definable quotient. Another important example is the partiality monad.
These counterexamples suggest that it pays off to move to a type theory where
all quotient types exist — i.e. the Type Theory corresponding to a Heyting
pretopos [8]. In this context our work can be seen as an exploration of the use
of quotients within the settings of Intensional Type Theory.

1.1 Type Theory basics

We use standard type theoretic notation, inspired by Agda [12]. We write (x ∶
A) → B for dependent function types (Π-types) and Σx ∶ A.B for dependent
product types (Σ-types). We assume that strictly positive inductive and coin-
ductive types such as natural numbers N, booleans Bool, disjoint union A+B and
lists List A are defined. We also use the family of finite sets Fin ∶ N → Set with
Fin n = {0,1, . . . , n − 1} which can be inductively generated from 0 ∶ Fin (n + 1)
and +1 ∶ Fin n → Fin (n + 1). We write Set for the universe of small sets.We
write Prop for the subuniverse of propositions that are sets which (extension-
ally) have at most one inhabitant (proof-irrelevance). We assume that Prop
contains the equality type a = b ∶ Prop for any a, b ∶ A ∶ Set 3 and is closed under
universal (∀) and existential (∃) quantification. While ∀ exactly corresponds to
a Π-type, ∃ is the squashing [9] of the corresponding Σ-type. Prop is also closed
under conjunction ∧ which is interpreted as a Σ-type where both components
are propositional (and can be dependent) while P ∨Q can be defined using ∃ and
Bool. Subset comprehension over a predicate P ∶ A→ Prop is interpreted as the
corresponding Σ-type, i.e. {a ∶ A ∣ P a} = Σa ∶ A . P . Due to proof irrelevance,
the projection {a ∶ A ∣ P a}→ A is an injection and we will omit it if it is obvious
from the context. We also omit implicit arguments and to improve readability,
we will even omit the declaration of implicitly quantified arguments, assuming
that the human reader, unlike a machine, can reconstruct those. Given elements
b ∶ B a and b′ ∶ B a′ with a proof p ∶ a = a′, we write b ≃p b′ for the heterogeneous
equality subst B pb = b′. Most of our examples do not require functional exten-
sionality, but if we do we assume that it is present in form of an uninterpreted
constant Ext ∶ (x ∶ A) → f x = g x → f = g, which is justified by Hofmann’s

3 This is consistent with Voevodsky’s univalence interpretation of type theory [14], if
one identify sets with types whose h-level is 2.

observation that extensional Type Theory is a conservative extension of the the-
ory considered in the present paper [7]. Alternatively we can eliminate Ext as
suggested in [1].

1.2 Related Work

Quotient types were introduced by Mendler in [9] and subsequently investigated
in Hofmann’s PhD dissertation [7]. An extensive investigation of setoids can be
found in [4]. Maetti considers extensions of both intensional and extensional
Type Theory by quotient types [8]. Courtieu considers an extension of CIC
(an intensional type theory) by normalized types corresponding to our definable
quotients [6]. Nogin describes a modular implementation of quotient types in
NuPRL (an extensional Type Theory) [10].

1.3 Main results

We develop the notion of a definable quotient within an existing intensional
Type Theory instead of an extension by a new type former. This enables us to
formally verify a number of basic results in Agda (see appendix), such as the
relation between exact quotients, coequalizers and definable quotients. We give
a number of examples for definable quotients, some which might seem surprising
such as the presentation of multisets over higher order types. Finally, we show
that certain quotient types are not definable quotients in our sense.

2 Setoids

We review the notion of a setoid and give a number of examples which we are
going to use subsequently.

Definition 1. A setoid (A,∼) is a set A equipped with an equivalence relation
∼ ∶A→ A→ Prop.

2.1 Examples

Integers The integers can be viewed as the setoid (Z0 = N×N,∼) where (a, b) ∼
(c, d) iff a + d = c + b reflecting the idea that (a, b) represents the integer a − b.

Rational numbers The rational numbers can in turn be defined as (Z ×N,∼)
where (x,m) ∼ (y, n) iff x×(n+1) = y×(m+1), reflecting that (x,m) represents
the quotient x

m+1 .

The real numbers The real numbers can then be defined as (R0,∼) where
R0 is the set of Cauchy sequences and two sequences are equivalent iff their
pointwise difference converges to 0.

R0 = {s ∶ N→ Q ∣ ∀ε ∶ Q, ε > 0→ ∃m ∶ N,∀i ∶ N, i >m→ ∣s i − sm∣ < ε}

r ∼ s = ∀ε ∶ Q, ε > 0→ ∃m ∶ N,∀i ∶ N, i >m→ ∣r i − s i∣ < ε

Unordered pairs Given a set A, the unordered pairs of elements of A is the
setoid (A ×A,∼) where ∼ is reflexive and (a, b) ∼ (b, a).

Finite multisets Given a set A , the finite multisets of elements in A is the
setoid (ListA,∼) where two lists are equivalent iff one is the permutation of the
other.

ListA = Σn ∶ N.Fin n→ A

(m,f) ∼ (n, g) = ∃ϕ ∶ Fin m→ Fin n ⋅ Bijection ϕ ∧ g ○ ϕ = f

Notice that (m,g) ∼ (n, f) Ô⇒ m = n is provable in type theory, based on the
definition of Bijection ∶ (A→ B)→ Prop which we omit here.

Finite sets Given a set A, the finite sets of elements in A is the setoid (ListA,∼)
where two lists are equivalent iff they contain the same elements :

(m,f) ⊆ (n, g) = ∃ϕ ∶ Fin m→ Fin n ⋅ g ○ ϕ = f

(m,f) ∼ (n, g) = (m,f) ⊆ (n, g) ∧ (n, g) ⊆ (m,f).

For example the lists [1,2,1] and [1,2] are equivalent and both represent the
set {1,2}.

Partiality monad Given a set A, the set of partial computations over A is
given by (A�0 ,∼) where A�0 is the set of delayed computations over A and ∼

is a weak bisimilarity ignoring finite delays. We define A�0 as generated by the
constructors

now ∶ A→ A�0

later ∶ ∞A�0 → A�0

where ∞ indicates a coinductive premise — categorically this is the terminal
coalgebra of F X = A +X. We inductively define the relation − ↓ − ∶ A�0 → A →
Prop with the idea that d ↓ a means that the computation d terminates with a,
by the following rules:

now a ↓ a

d ↓ a

later d ↓ a

We define the termination order ⊑ ∶ A�0 → A�0 → Prop as d ⊑ d′ = ∀a ∶ A.d ↓ a→
d′ ↓ a and d ∼ d′ = d ⊑ d′ ∧ d′ ⊑ d . See [5].

3 Quotients and coequalizers

We define what an (exact) quotient over a setoid is and relate this to an al-
ternative definition given by Hofmann and to the categorical definition. All the
concepts have been formalized in Agda (see Appendix A).

Definition 2 (prequotient, quotient, exact quotient).
Given a setoid (A,∼), a prequotient (Q, [⋅], sound) over that setoid consists in

1. a set Q,
2. a function [⋅] ∶ A→ Q,
3. a proof sound that the function [⋅] is compatible with the relation ∼, that is

sound∶ (a, b ∶ A)→ a ∼ b→ [a] = [b],

Such a prequotient is a quotient if we also have

4. for any B ∶ Q→ Set, an eliminator

qelimB ∶ (f ∶ (a ∶ A)→ B [a])

→ ((p ∶ a ∼ b)→ f a ≃sound p f b)

→ ((q ∶ Q)→ B q)

such that qelim-β ∶ qelimB f p [a] = f a.

Finally, such a quotient is exact if additionally we have a proof

5. exact ∶ (∀a, b ∶ A)→ [a] = [b]→ a ∼ b.

There are two special cases of the eliminator qelimB described in item 4. One
is if B is not dependent,

lift∶ (f ∶A→ B)→ (∀a, b ⋅ a ∼ b→ f a = f b)→ (Q→ B)

and the other is if B is a predicate, i.e. B ∶ Q → Prop, in which case we get an
induction principle:

qind∶ ((a ∶ A)→ B [a])→ ((q ∶ Q)→ B q)

since the condition ((p ∶ a ∼ b) → f a ≃sound p f b) of the eliminator is trivially
satisfied. These two special cases are in fact sufficient to recover the elimina-
tor, which is reminiscent of the fact that dependent elimination for the natural
numbers can be constructed from non-dependent elimination and an induction
principle.

Proposition 3. A prequotient (Q, [⋅], sound) with

1. a non-dependent eliminator

liftB ∶ (f ∶A→ B)→ (∀a, b ⋅ a ∼ b→ f a = f b)→ (Q→ B)

for any B∶Set,
2. a β-law

lift-β ∶ liftB f p [a] = f a,

3. an induction principle

qindP ∶ ((a∶A)→ P [a])→ ((q∶Q)→ P q)

gives rise to a quotient (Q, [⋅], sound,qelim,qelim-β).

We refer to Appendix A for a formal proof of Proposition 3 and its converse. The
characterization in Proposition 3 was given as a definition of quotients in [7].

Quotients correspond to coequalizers in category theory. Let us recall the
definition.

Definition 4. Given two morphisms g, h ∶ S → A, a coequalizer of g and h is a
morphism [⋅] ∶ A→ Q such that for any f ∶ A→X satisfying f ○ g = f ○ h, there
exists a unique f̂ such that

S
g //
h

// A
[⋅] //

f ��???????? Q

f̂

���
�
�

X

A coequalizer is exact if

S
_�

g //

h

��

A

[⋅]
��

A [⋅]
// Q

and it is split if the morphism [⋅] is a split epi, that is if it has a right inverse
emb ∶ Q→ A.

We observe that there is an exact correspondence between quotients and
coequalizers:

Proposition 5. In the context of Definition 4 above :

1. Q is the quotient on (S,∼) where s ∼ s′ if and only if g s = hs′. This quotient
is exact iff the coequalizer is exact.

2. Let R be Σa,a′ ∶ A,a ∼ a′ and π0, π1 ∶ R → A the projection functions. The
quotient for (R,∼) is then the coequalizer for those projections and it is exact
if and only if the coequalizer is exact.

R
π0 //
π1

// A
[⋅] //

f ��???????? Q

f̂

���
�
�

X

where f̂ = lift fp and p∶ ∀a, b ⋅ a ∼ b→ f a = f b follows from f ○ π0 = f ○ π1.

4 Definable quotients

We now consider a general construction which allows us to construct quotients
in type theory.

Definition 6. A definable quotient is a prequotient (Q, [⋅], sound) on a setoid
(A,∼) along with

emb ∶ Q→ A

complete ∶ (a ∶ A)→ emb [a] ∼ a

stable ∶ (q ∶ Q)→ [emb q] = q

This is exactly the specification of [−] as a normalisation function with re-
spect to emb (see [2]).

Proposition 7. All definable quotients are exact quotients.

Proof. Given (f ∶A → B) and p ∶ a ∼ b → f a = f b, define lift f p q = f(emb q)
from which we get lift f (p ∶ a ∼ b) [a] = f(emb [a]) = f a because emb [a] ∼ a by
completeness and f respects ∼ by p.

To derive qind, let f ∶ (a∶A)→ B [a] and q ∶ Q. Since [emb q] = q by stability,
hence from f(emb q) ∶ B [emb q] we can derive a proof of B q.

It follows from Proposition 3 that this defines a quotient.
Finally, from [a] = [b] we obtain by completeness that a ∼ emb([a]) =

emb([b]) ∼ b and hence a ∼ b. That is, the quotient is exact.

4.1 Examples

We revisit the examples of setoids which turn out to correspond to definable
quotients.

The integers Define Z = N +N and

[(a,0)] = inl a

[(a + 1, b + 1)] = [(a, b)]

[(0, b + 1)] = inr b

emb(inla) = (a,0)

emb(inr b) = (0, b + 1)

The fact that this gives rise to a definable quotient has been verified in Agda [13].
One could of course just use that Z = N + N and define the operations on Z

directly. However, seeing Z as a quotient is helpful in proving properties of those
operations and reflects the usual mathematical definition of the integers. E.g.,
to define +, we define

(a, b)+0(a
′, b′) = (a + a′, b + b′)

on Z0 and show that it respects ∼. Then by lifting +0, we get + on Z, thus
avoiding a rather incomprehensible case analysis. This becomes even more rele-
vant when showing other properties such as distributivity of multiplication over
addition [13].

The rational numbers Define Q = {(x,m) ∶ Z ×N ∣ gcd x (m + 1) = 1} and

[(x,m)] = (
x

d
,
m + 1

d
− 1) where d = gcd x (m + 1)

emb (x,m) = (x,m)

Note that the greatest common divisor function (gcd) is definable in type theory.
Completeness comes from the fact that, for any common divisor d of x and m+1,
it is provable that (x

d
, m+1

d
− 1) ∼ (x,m) because x

d
× (m + 1) = x × (m+1

d
− 1 + 1).

Stability holds because whenever d = gcd x (m + 1) = 1, we have (x
d
, m+1

d
− 1) =

(x,m).

Unordered pairs The construction of a definable quotient over the setoids of
unordered pairs (A×A,∼) as defined in Section 2.1 depends on the choice of A.
In general we require an order ≤∶ A→ A→ Prop together with functions:

min,max ∶ A→ A→ A

calculating the binary minimum and maximum for that order. This allows us to
define

Q = {(a, b) ∣ a ≤ b}

and
[(a, b)] = (mina b,maxa b).

Soundness is obviously satisfied. An embedding of Q into A × A is simply the
first projection — for recall that an element in Q is of the form ((a, b), p) where
p is a proof that a ≤ b (see Section 1) :

emb ∶ Q→ A ×A

emb = π0

from which completeness and stability as stated in Definition 6 clearly ensue
: [(a, b)] ∼ (a, b) and if a ≤ b then [(a, b)] = (a, b). Both facts follow from the
properties of min and max. Thus (Q, [⋅]) gives rise to a definable quotient.

We consider three examples in which A is taken to be the set N, N→ N and
(N→ N)→ N respectively :

A = N
We use the standard ordering ≤∶ N → N → Prop and exploit that it is
constructively total ∀m,n ⋅m ≤ n ∨ n ≤m to define min and max.

A = N→ N
We use the lexicographic ordering <,≤ ∶ (N→ N)→ (N→ N)→ Prop

f < g = ∃m ∶ N ⋅ fm < gn ∧ ∀i <m ⋅ f i = g i

f ≤ g = f < g ∨ f = g

While this order is not constructively total, in the sense that one cannot
define a test to decide whether f < g, it is still possible to define min and
max. For instance, the operator min ∶ (N → N) → (N → N) → (N → N) can
be defined as :

min f g n = if f n = g n then fn
else
let i =min{j ≤ n ∣ f j /= g j}

in if f i < g i then f n else g n

Notice that both the definition of i and the test f i < g i do not depend on n
but only on f and g. Thus, in the case where f and g are different, min f g
consistently returns the same function f or g, whichever is the smallest in
lexicographical order. In the case where the two functions f and g are equal,
then the second branch of the top level if. . . then. . . else. . . is never chosen.

A = (N→ N)→ N
The general idea to define the operator min is the same as in the case where
A = N → N. Let ϕ ∶ N → (N → N) be an enumeration of natural sequences
such that any finite sequence [x0, . . . , xk] of natural numbers is the prefix of
ϕi for some i in the sense that ϕi 0 = x0, . . . , ϕi k = xk (see Appendix B for
a definition of ϕ). We define :

min f g u = if f u = g u then fu
else
let i =min{i ∶ N ∣ f ϕi /= g ϕi}

in if f ϕi < g ϕi then f u else g u.

Notice as previously that both the definition of i and the test f ϕi < g ϕi
do not depend on u but only on f and g. Under the assumption that local
continuity holds (see Definition 12 below), we know that if f u /= g u then
there must exist some ϕi, sharing a long enough prefix with u, such that
f ϕi /= g ϕi. However, if one works in a type theory where type checking
is decidable, local continuity needs to be derivable and not just admissible

for the system to accept the above definition. As an alternative, one may
postulate

local_continuity ∶
∀f, g ∶ (N→ N)→ N
→ (∃u ∶ N→ N . f u ≠ g u)
→ (∃n ∶ N ∀v ∶ N→ N (∀i ≤ n . vi = ui Ô⇒ f v ≠ g v))

Finite multisets As in the case of unordered pairs, the construction of a de-
finable quotient over the setoid of multisets (ListA,∼) defined in Section 2.1
depends on the choice of A. We again require an order A→ A→ Prop to define
the set of finite multisets of elements of A as

Q = {(m,s) ∶ ListA ∣ ∀i, j ∶ Fin m ⋅ i ≤ j Ô⇒ s i ≤ s j}

and a sorting function sort ∶ ListA→ ListA from which we define

[(m,s)] = (m, sort s).

Notice that the function sort can be defined from the functions min and max ∶
A → A → A used in the previous example about unordered pairs. However,
we use a more direct method in our exploration of the case where A is the
set N → N of natural sequences. At first glance, it might seem counterintuitive
that one can constructively sort sequences of infinite natural sequences and thus
obtain a definable quotient of the setoids of multisets of natural sequences. As
with unordered pairs, the first projection defines an embedding from Q to ListA
which clearly gives rise to a definable quotient.

A = N→ N
First we define a family of preorders {≤k}k∶N on sequences of natural numbers
by requesting that u ≤k v if and only if the finite sequence [u0, . . . , uk] comes
before the finite sequence [v0, . . . , vk] in the lexicographic order. Writing
u ≤k v for (≤)k uv :

− ≤− − ∶ N→ (N→ N)→ (N→ N)→ Bool

u ≤k v = ui ≤ vi

where i =min{i ∶ N ∣ i > k ∨ ui ≠ vi} .

Notice that if u <k v for some k then u <l v for all l greater than k.
Now, given a finite sequence of natural sequences ϕ ∶ Finm → (N → N), we
can order it using any algorithm

sortm,k ∶ (Finm→ (N→ N))→ (Finm→ (N→ N))

which sorts m sequences according to the preorder ≤k. We are then able to
define :

[(m,ϕ)] = (m,ψ)

where ψ i j = (sortm,j ϕ) i j,

so that the finite sequence [ψ 0, . . . , ψ (m − 1)] thus defined is the finite se-
quence [ϕ0, . . . , ϕ (m − 1)] ordered in lexicographic order. The key point
justifying that claim is that

(sortm,j ϕ) i k = (sort∗m ϕ) i k (1)

for all i ∶ Finm and all k ≤ j where sort∗m ϕ is the finite sequence whose
elements are the functions ϕi ∶ N → N ordered in full lexicographical or-
der — we do not assume sort∗m to be definable a priori although it is as
a consequence of the definability of sortm,j . We omit further details of the
proof, the intuition drawn from the case of unordered pairs above being more
interesting.

A = (N→ N)→ N
This example will be the subject of a separate paper as its formalization is
quite involved.

Finite sets

For types A over which equality is decidable, the set of finite subsets of A can
easily be defined as a quotient of the setoid of finite sets (ListA,∼) considered
in Section 2.1:

Q = {(m,s) ∶ ListA ∣ ∀i, j ∶ Fin m ⋅ i ≤ j Ô⇒ s i < s j}

[(m,as)] = nub(sort as)

where nub ∶ List A→ List A takes advantage of the decidability of equality on A
to remove duplicates in a list.

However, there is no hope to define [⋅] ∶ List A → Q when equality on A is
not decidable, as a = b is equivalent to length [(a, b)] = 1, which is decidable.

5 Undefinable quotients

However there are interesting setoid specifications for which it is impossible to
construct a definable quotient in type theory. Examples include the real numbers
and the partiality monad described in Section 2.1. To prove that these are indeed
undefinable quotients, we first establish some properties of type theory in a
classical metatheory. We write ⊢ a ∶ A if a ∶ A is derivable in the type theory
under consideration. In case that ⊢ P ∶ Prop, we simply write ⊢ P to indicate
that there is a proof p of P which is derivable, that is ⊢ p ∶ P .

Definition 8 (separable elements, discrete sets).

1. Two elements a and b of a definable set are separable, written a ♯ b, if there
exists a definable test P ∶A→ Bool such that ⊢ P a ≠ P b.

2. A definable set A is discrete whenever ⊢ a, b ∶ A and ⊢ a /= b entails that a
and b are separable.

Proposition 9. The set N→ N is discrete.

Proof. Assume ⊢ f, g∶N → N and ⊢ f ≠ g. By soundness, f and g must denote
different functions and hence there is a natural number i such that ⊢ f i ≠ g i.
Hence we can define P h = h i ?

= f i where ?
=∶N→ N→ Bool is a decision procedure

for equality on N.

Note that we have used classical reasoning in the proof of Proposition 9.
However, we do not think it is necessary because it should be possible to extract
the witness i from the proof that f ≠ g.

Proposition 10. Assume e∶A→ B is a definable split epi. If A is discrete then
B is discrete.

Proof. Let ⊢ s∶B → A such that ⊢ e ○ s = idB and let ⊢ b ≠ b′∶B. Then ⊢ s b ≠ s b′

because s is a right inverse of e :

⊢ s b = s b′ → (e ○ s) b = (e ○ s) b′ by congruence
⊢ s b = s b′ → idB b = idB b′ e ○ s = idB

⊢ s b = s b′ → b = b′ by definition of idB
⊢ s b = s b′ → � by modus ponens with b = b′ → �.

Hence there exists ⊢ P ∶A → Bool such that ⊢ P (s b) ≠ P (s b′), because A is
discrete, and ⊢ P ′∶B → Bool defined by P ′ = P ○ s provably separates b and b′.
Therefore B is discrete.

Proposition 11. R0 is discrete.

Proof. Left to the reader as it is essentially the same as the proof for Proposi-
tion 9.

To show that any set R which is a definable quotient of the setoid (R0,∼) given
earlier in 2.1 is not discrete, we need

Definition 12 (local continuity). Local continuity at type (N → N) → N is
the property that

for all definable functions ϕ ∶ (N→ N)→ N,
for all definable sequences f ∶ N→ N,
there exists n ∶ N such that
for all definable sequences g ∶ N→ N satisfying (∀i ≤ n, ⊢ f i = g i),

we have that ⊢ ϕf = ϕg.

Local continuity expresses the fact that, to compute ϕf , the reduction relation
defining the operational semantics of type theory only inspects finitely many
terms of the input sequence f . We have stated local continuity in its perhaps
simplest form, at a particular type. However, we conjecture that it can be ex-
pressed and proved at all types. Whatever the case, it is easily shown that local
continuity at type (N → N) → N entails local continuity at some other types, in
particular at type (N → Q) → Bool, which we next use to show that no set is a
definable quotient of the setoid (R0,∼) described in Section 2.1.

Lemma 13. (local continuity for tests on rational sequences)
In the presence of local continuity as in Definition 12, the following property

holds :

for all definable functions ϕ∶ (N→ Q)→ Bool,

for all definable sequences f ∶N→ Q,
there exists n ∶ N such that
for all definable sequences g∶N→ Q satisfying (∀i ≤ n, ⊢ f i = g i),

we have that ⊢ ϕf = ϕg.

Proof. Let η∶N → Q be a definable bijection from N to Q and ι∶Bool → N a
definable monomorphism, e.g. ι(true) = 0, ι(false) = 1. Let ϕ∶ (N → Q) → Bool
and f ∶N → Q be as in the statement of Lemma 13. Define ϕ′∶ (N → N) → N by
ϕ′ f = ι(ϕ(η f)). By local continuity at type (N→ N)→ N, there exists n ∶ N such
that for all definable sequences g′∶N → N satisfying (∀i ≤ n, ⊢ (η−1 ○ f) i = g′ i),
we have that ⊢ ϕ′ (η−1 ○ f) = ϕ′ g′. Now suppose that some definable function
g∶ (N → Q) → Bool is such that (∀i ≤ n, ⊢ f i = g i). Then we also have that
(∀i ≤ n, ⊢ (η−1 ○ f) i = (η−1 ○ g) i) and hence that ⊢ ϕ′ (η−1 ○ f) = ϕ′ (η−1 ○ g),
that is ⊢ (ι ○ ϕ) f = (ι ○ ϕ) g, by definition of ϕ′. Since ι is mono, we then have
⊢ ϕf = ϕg, as expected.

Proposition 14. In the presence of local continuity, no set R is a definable
quotient of the setoid (R0,∼).

Proof. Suppose for the sake of contradiction that (R, [⋅], sound) is a definable
quotient of the setoid (R0,∼). The function [⋅]∶R0 → R is a split epi, as it has a
right inverse emb, and hence by propositions 11 and 10, the set R is discrete. By
exactness of the quotient, we have that [0⃗] ≠ [1⃗] where 0⃗ and 1⃗ are elements of R0

representing the Cauchy sequences λx.0 and λx.1, respectively. By discreteness
of R, there exists a definable function P ∶ R → Bool such that ⊢ P [0⃗] ≠ P [1⃗]. It
follows that the function P ′ ∶ R0 → Bool defined by P ′ s = P [s] has the property
that ⊢ P ′ 0⃗ ≠ P ′ 1⃗ and that P ′ is closed under ∼. By local continuity at type
(N→ Q)→ Bool (Lemma 13) and by proof irrelevance in the second component
of the pairs in R0, there is a number nP such that, for all definable sequences
f ∶N→ Q,

(∀i ≤ nP , ⊢ f i = 0Q) entails P ′ f = P ′
(π0 0⃗).

Define g i = if i ≤ n then 0Q else 1Q, such that P ′g = P ′0⃗ by local continuity.
However g ∼ 1⃗ and hence P ′ g = P ′ 1⃗, which contradicts P ′ 1⃗ ≠ P ′ 0⃗.

Using very similar reasoning it can be shown that N� is not definable either.
It seems that all sets definable in ordinary type theory (using only the set

formers Π, Σ, =, finite sets,W , see e.g. [11]) are discrete. This observation shows
that the reals are not definable as an exact quotient in ordinary type theory while
Proposition 14 shows that reals are not a definable quotient in any extension of
ordinary type theory, as long as local continuity is admissible.

6 Conclusions

The main result of the present work is that the notion of a definable quotient
in intensional type theory is useful and doesn’t require any extension of the
theory. We hope that our formalisation of the notion and the examples help to
popularize this notion among people using type theory. Some of the examples are
maybe surprising, i.e. the possibility to define unordered pairs and multisets for
1st order function types, even though the order (and equality) of the elements
are undecidable. Assuming an internal proof of local continuity, this can be
even extended beyond 1st order. We also show that under the assumption of
local continuity the set of real numbers cannot be defined by normalisation.
This also extends to other examples such as the partiality monad. These natural
examples strongly suggest that while the notion of a definable quotient is useful,
we would also like to be able to use quotient sets which do not fall in this
category. In the present work we have only covered the notion of a quotient by
a propositional family. It seems interesting, especially in the context of higher
dimensional type theory inspired by Voevodsky’s proposal [14], to consider non-
propositional quotients, e.g. the quotient of a set by a groupoid. An example for
a definable quotient of this kind would be the quotient of a non-canonical notion
of finite sets by isomorphism.

References

1. Thorsten Altenkirch. Extensional equality in intensional type theory. In 14th
Symposium on Logic in Computer Science, pages 412 – 420, 1999.

2. Thorsten Altenkirch and James Chapman. Big-step normalisation. Journal of
Functional Programming, 19(3-4):311–333, 2009.

3. Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational equal-
ity, now! In PLPV ’07: Proceedings of the 2007 workshop on Programming lan-
guages meets program verification, pages 57–68, New York, NY, USA, 2007. ACM.

4. G. Barthe, V. Capretta, and O. Pons. Setoids in type theory. Journal of Functional
Programming, 13(02):261–293, 2003.

5. Venanzio Capretta. General recursion via coinductive types. Logical Methods in
Computer Science, 1(2):1–18, 2005.

6. Pierre Courtieu. Normalized types. In Proceedings of CSL2001, volume 2142 of
Lecture Notes in Computer Science, 2001.

7. Martin Hofmann. Extensional concepts in intensional type theory. PhD thesis,
School of Informatics., 1995.

8. M. Maietti. About effective quotients in constructive type theory. Types for Proofs
and Programs, pages 166–178, 1999.

9. N.P. Mendler. Quotient types via coequalizers in martin-löf type theory. In Pro-
ceedings of the Logical Frameworks Workshop, pages 349–361, 1990.

10. Aleksey Nogin. Quotient types: A modular approach. In ITU-T Recommendation
H.324, pages 263–280. Springer-Verlag, 2002.

11. B. Nordström, K. Petersson, and J.M. Smith. Programming in Martin-Löf’s type
theory, volume 85. Citeseer, 1990.

12. Ulf Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, 2007.

13. Li Nuo. Representing numbers in agda. Technical report, School of Computer
Science, University of Nottingham, 2010. Summer internship report.

14. Vladimir Voevodsky. Univalent foundations of mathematics, 2011. webpage.

A Formalization in Agda

module Quotient where
open import Data.Product
open import Function
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality
hiding (isEquivalence)

open import ThomasProperties

Definition of setoids

record Setoid ∶ Set1 where
infix 4 _≈_
field
Carrier ∶ Set
≈ ∶ Carrier→ Carrier→ Set
isEquivalence ∶ IsEquivalence _≈_

open IsEquivalence isEquivalence public
open Setoid renaming

(refl to reflexive; sym to symmetric; trans to transitive)

Prequotients

record PreQu (S ∶ Setoid) ∶ Set1 where
constructor
Q:_ [] :_sound:_

private
A = Carrier S
∼ = _≈_ S

field
Q ∶ Set
[] ∶ A→ Q
sound ∶ ∀ {a b ∶ A}→ a ∼ b→ [a] = [b]

open PreQu renaming
(Q to Q’; [] to nf; sound to sound’)

Quotients as prequotients with a dependent eliminator.

record Qu {S ∶ Setoid} (PQ ∶ PreQu S) ∶ Set1 where
constructor
qelim:_qelim-β:_

private
A = Carrier S
∼ = _≈_ S
Q = Q’ PQ
[] = nf PQ
sound ∶ ∀ {a b ∶ A}→ (a ∼ b)→ [a] = [b]
sound = sound’ PQ

field
qelim ∶ {B ∶ Q→ Set}

→ (f ∶ (a ∶ A)→ B [a])
→ ((a b ∶ A)→ (p ∶ a ∼ b)
→ subst B (sound p) (f a) = f b)

→ (q ∶ Q)→ B q
qelim-β ∶ ∀ {B a f} q→ qelim {B} f q [a] = f a

open Qu

Proof irrelevance of qelim

qelimIrr ∶ {S ∶ Setoid} {PQ ∶ PreQu S} (x ∶ Qu PQ)

→ ∀ {B a f q q’}
→ qelim x {B} f q (nf PQ a)
= qelim x {B} f q’ (nf PQ a)

qelimIrr x {B} {a} {f} {q} {q’} = (qelim-β x {B} {a} {f} q)
▶ ⟨ qelim-β x {B} {a} {f} q’ ⟩

Exact quotients

record QuE {S ∶ Setoid} {PQ ∶ PreQu S} (QU ∶ Qu PQ) ∶ Set1 where
constructor
exact:_

private
A = Carrier S
∼ = _≈_ S
[] = nf PQ

field

exact ∶ ∀ {a b ∶ A}→ [a] = [b]→ a ∼ b
open QuE

Quotients as prequotients with a non-dependent eliminator (lift).
(As in Hofmann’s PhD dissertation.)

record QuH {S ∶ Setoid} (PQ ∶ PreQu S) ∶ Set1 where
constructor
lift:_lift-β:_qind:_

private
A = Carrier S
∼ = _≈_ S
Q = Q’ PQ
[] = nf PQ

field
lift ∶ {B ∶ Set}

→ (f ∶ A→ B)

→ ((a b ∶ A)→ (a ∼ b)→ f a = f b)
→ Q→ B

lift-β ∶ ∀ {B a f q}→ lift {B} f q [a] = f a
qind ∶ (P ∶ Q→ Set)

→ (∀ x→ (p p’ ∶ P x)→ p = p’)
→ (∀ a→ P [a])
→ (∀ x→ P x)

open QuH renaming (lift to lift’; lift-β to lift-β’)

Definable quotients

record QuD {S ∶ Setoid} (PQ ∶ PreQu S) ∶ Set1 where
constructor
emb:_complete:_stable:_

private
A = Carrier S
∼ = _≈_ S
Q = Q’ PQ
[] = nf PQ

field
emb ∶ Q→ A
complete ∶ ∀ a→ emb [a] ∼ a
stable ∶ ∀ q→ [emb q] = q

open QuD

Relations between types of quotients:
Below, we show the following, where the arrow → means "gives rise to" :
QuH→ Qu (Proposition 3 in the paper)
Qu→ QuH (Reverse of Proposition 3)
QuD→ QuE (A definable quotient is always exact)

QuD→ Qu
QuD→ QuH (Also a consequence of QuD→ Qu and Qu→ QuH)

QuH→Qu ∶ {S ∶ Setoid}→ {PQ ∶ PreQu S}
→ (QuH PQ)→ (Qu PQ)

QuH→Qu {S} {Q: Q [] ∶ [] sound: sound}
(lift: lift lift-β: β qind: qind) =

record
{qelim = λ {B}→ qelim1 {B}

;qelim-β = λ {B} {a} {f}→ qelim-β1 {B} a f
}

where
A = Carrier S
∼ = _≈_ S
-- the dependent function f is made independent

indep ∶ {B ∶ Q→ Set}→ ((a ∶ A)→ B [a])→ A→ Σ Q B
indep f a = [a], f a
indep-β ∶ {B ∶ Q→ Set}

→ (f ∶ (a ∶ A)→ B [a])
→ (∀ a b→ (p ∶ a ∼ b)→ subst B (sound p) (f a) = f b)
→ ∀ a a’→ (a ∼ a’)→ indep {B} f a = indep f a’

indep-β {B} f q a a’ p = (cong_, [a] [a’] (sound p) (f a))
▶ ((λ b→ [a’],b) ⋆ (q a a’ p))

lift0 ∶ {B ∶ Q→ Set}
→ (f ∶ (a ∶ A)→ (B [a]))
→ ((a a’ ∶ A)→ (p ∶ a ∼ a’)
→ subst B (sound p) (f a) = f a’)
→ Q→ Σ Q B

lift0 f q = lift (indep f) (indep-β f q)
qind1 ∶ {B ∶ Q→ Set}
→ (f ∶ (a ∶ A)→ B [a])
→ (q ∶ ∀ a b→ (p ∶ a ∼ b)→ subst B (sound p) (f a) = f b)
→ ∀ (c ∶ Q)→ proj1 (lift0 f q c) = c

qind1 {B} f q = qind P heredity base
where
f’ ∶ Q→ Σ Q B
f’ = lift0 f q
P ∶ Q→ Set
P c = proj1 { } { } {Q} {B} (lift0 f q c) = c
heredity ∶ ∀ x→ (p p’ ∶ P x)→ p = p’
heredity x p p’ = =-prfIrr ((lift0 f q x) 1) x p p’
base ∶ ∀ a→ P [a]
base a = proj1 ⋆ β

qelim1 ∶ {B ∶ Q→ Set}
→ (f ∶ (a ∶ A)→ (B [a]))

→ (∀ a b→ (p ∶ a ∼ b)→ subst B (sound p) (f a) = f b)
→ (c ∶ Q)→ B c

qelim1 {B} f q c = subst B (qind1 f q c)
(proj2 { } { } {Q} {B} (lift0 f q c))

qelim-β1 ∶ ∀ {B} a f q→ qelim1 {B} f q [a] = f a
qelim-β1 {B} a f q =

(substIrr B (qind1 f q [a])
(cong-proj1 {Q} {B} (lift0 f q [a]) (indep f a) β)
(proj2 { } { } {Q} {B} (lift0 f q [a])))▶

(cong-proj2 {Q} {B} (lift0 f q [a]) (indep f a) β)

Qu→QuH ∶ {S ∶ Setoid}→ {PQ ∶ PreQu S}
→ (Qu PQ)→ (QuH PQ)

Qu→QuH {S} {Q: Q [] ∶ [] sound: sound} (qelim: qelim qelim-β: β) =

record
{ lift = λ {B} f s→ qelim {λ → B} f (λ a b p

→ (subFix (sound p) B (f a))▶ (s a b p))
; lift-β = λ {B} {a’} {f} {s}→ β {λ → B} {a’} {f} (λ a b p

→ (subFix (sound p) B (f a))▶ (s a b p))
;qind = λ P irr f
→ qelim {P} f (λ a b p→ irr [b] (subst P (sound p) (f a)) (f b))

}

where
subFix ∶ ∀ {A ∶ Set} {c d ∶ A} (x ∶ c = d) (B ∶ Set) (p ∶ B)

→ subst (λ → B) x p = p
subFix refl = refl

QuD→QuE ∶ {S ∶ Setoid} {PQ ∶ PreQu S} {QU ∶ Qu PQ}

→ (QuD PQ)→ (QuE QU)

QuD→QuE {S} {Q: Q [] ∶ [] sound: }

(emb: emb complete: complete stable:) =

record {exact = λ {a} {b} [a] = [b]
→ ⟨ complete a ⟩0
▶0 subst (λ x→ x ∼ b) (emb ⋆ ⟨ [a] = [b] ⟩) (complete b)

}

where
A = Carrier S
∼ = _≈_ S
⟨_⟩0 ∶ Symmetric _∼_
⟨_⟩0 = symmetric S
▶0 ∶ Transitive _∼_
▶0 = transitive S

QuD→Qu ∶ {S ∶ Setoid}→ {PQ ∶ PreQu S}
→ (QuD PQ)→ (Qu PQ)

QuD→Qu {S} {Q: Q [] ∶ [] sound: sound}
(emb: ⌜_⌝ complete: complete stable: stable) =

record
{qelim = λ {B} f a→ subst B (stable a) (f ⌜ a ⌝)

;qelim-β = λ {B} {a} {f} s
→ substIrr B (stable [a]) (sound (complete a)) (f ⌜ [a] ⌝)
▶ s (complete a)

}

QuD→QuH ∶ {S ∶ Setoid}→ {PQ ∶ PreQu S}
→ (QuD PQ)→ (QuH PQ)

QuD→QuH {S} {Q: Q [] ∶ [] sound: sound}
(emb: ⌜_⌝ complete: complete stable: stable) =

record
{ lift = λ f q→ f ⌜ q ⌝

; lift-β = λ {B} {a} {f} {s}→ s ⌜ [a] ⌝ a (complete a)
;qind = λ P f→ λ x→ subst P (stable x) (f ⌜ x ⌝)

}

Or

QuD→QuH’ ∶ {S ∶ Setoid}→ {PQ ∶ PreQu S}
→ (QuD PQ)→ (QuH PQ)

QuD→QuH’ {S} = Qu→QuH ○ QuD→Qu

B Definition of the enumeration ϕ of natural sequences

We define a family {ϕi ∶ N→ N}i∶N of natural sequences with the property that
any finite sequence [x0, . . . , xk] of natural numbers is a prefix of some ϕi, which
we need in some of our examples. Furthermore, although not strictly needed
here, these sequences are pairwise distinct. One idea to define such a family is
to request that the sequences ϕ2i at even indices are those starting with 0 while
the others are in turn split into those starting with 1 (the ϕ2i+1+2k, i.e. every
other sequence of odd index) and the remaining sequences, starting with at least
2, etc. For each subfamily of sequences starting with the same prefix of length
n, we define the (n+ 1)th term in the same manner. Table B shows the prefix of
the first 21 sequences.

Here are complete definitions written in the programming language Haskell.
The first version is perhaps the easiest to understand but is given in terms of
lists. The second version is a direct translation of the former in the language of
functions directly. Finally, the third version is more direct and perhaps easier to
read for some people.

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11 ϕ12 ϕ13 ϕ14 ϕ15 ϕ16 ϕ17 ϕ18 ϕ19 ϕ20

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0
0 0 1 0 0 1 2 0 0 0 1 1 0 2 3 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1 1 0 2 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0
⋮ ⋮

Table 1. Prefixes of ϕ0 to ϕ20

B.1 Version 1

phi ∶∶ Int→ (Int→ Int)
phi i j = sequences !! i !! j
sequences = [0,0 . .] ∶ (tail (startWithAtLeast 0))
startWithAtLeast n = interleave (startWith n)

(startWithAtLeast (n + 1))

startWith n = map (n∶) sequences
interleave (x ∶ xs) ys = x ∶ interleave ys xs

B.2 Version 2

phi ∶∶ Int→ (Int→ Int)
phi = startWithAtLeast 0
startWithAtLeast n = interleave (startWith n)

(startWithAtLeast (n + 1))

startWith n i 0 = n
startWith n i (j + 1) = phi i j

interleave fs gs 0 = fs 0
interleave fs gs (i + 1) = interleave gs (fs ○ (+1)) i

B.3 Version 3

phi ∶∶ Int→ (Int→ Int)

phi i 0 ∣ even i = 0

∣ odd i = phi (i ‘div‘ 2) 0 + 1

phi i (j + 1) ∣ even i = phi (i ‘div‘ 2) j
∣ odd i = phi (i ‘div‘ 2) (j + 1)

