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Abstract
We solve the decision problem for simply typed lambda
calculus with strong binary sums, equivalently the word
problem for free cartesian closed categories with binary
coproducts. Our method is based on the semantical tech-
nique known as “normalization by evaluation” and in-
volves inverting the interpretation of the syntax into a
suitable sheaf model and from this extracting appropri-
ate unique normal forms. There is no rewriting theory in-
volved, and the proof is completely constructive, allowing
program extraction from the proof.

1 Introduction
In this paper we solve the decision problem for simply
typed lambda calculus with categorical coproduct (strong
disjoint sum) types. While this calculus is both natu-
ral and simple, the decision problem is a long-standing
thorny issue in the subject. Our solution is based on nor-
malization by evaluation (NBE) (also called “reduction-
free normalisation”) introduced by Martin-Löf [ML75]
for weak typed lambda calculus, and by Berger and
Schwichtenberg [BS91] for typed lambda calculus with���

conversion. The technique has been further refined by
the authors and coworkers using category-theoretic meth-
ods [CD97, AHS95, CDS97]. It has also been extended to
other systems, such as System F [AHS96]. As shown by
Berger, Schwichtenberg, and Danvy [BS91, Da96], NBE
techniques yield fast normalization algorithms, with ap-
plications in interactive proof systems [BBSSZ98] and
type-directed partial evaluation [Da96, Da98, Fil01].

Here we show how to considerably extend the NBE
techniques to take into account type systems with strong
sums. The NBE method involves constructing a model�

and effectively “inverting” the evaluation of lambda�
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terms in
�

and thereby extracting certain unique syntac-
tic normal forms, from which a decision procedure easily
follows (we outline the proof below). The proof uses no
rewriting theory.

Typed lambda calculi with (strong) sum types arise very
naturally:
� In programming language theory, coproducts model

variant and enumerative types. The added categori-
cal equation for coproducts corresponds to a kind of
uniqueness for pattern matching or Case construc-
tion [AC98, Mit96, GLT89].� In proof theory, under the Curry-Howard Isomor-
phism, terms correspond to natural deduction proofs
in intuitionistic propositional ���������������� logic.
One then considers terms (proofs) modulo certain
equations, which guarantee, for example, that the
formula ����� acts as a coproduct type (with co-
pairing), as well as including the theory of com-
mutative conversions (cf [GLT89], pp 80-81). In
category theoretic terminology, such lambda theo-
ries correspond exactly to almost bicartesian closed
categories, that is, cartesian closed categories with
nonempty finite coproducts (generated by a set of
atomic types) [LS86].� As proved by Dougherty and Subrahmanyam
[DS95], a Friedman completeness theorem in Set
holds for cartesian closed categories with binary
coproducts. Therefore, the equality we decide
is the natural extensional equality on proofs in
intuitionistic propositional logic and on terms of the
typed lambda calculus with sums.

Much of traditional lambda calculus theory carries
through unscathed when we add products (and even weak
categorical data types) to the simply typed case. Unfor-
tunately, the addition of coproducts is considerably more
subtle. The difficulties with adding coproducts are de-
tailed in [Do93, DS95]: for example, the analog of Stat-
man’s 1-Section theorem fails in the presence of coprod-
ucts, confluence (of various standard rewriting presenta-
tions) fails, and the proof of Friedman’s completeness the-
orem for the case of coproducts uses difficult and involved
syntactical arguments [DS95].



A decision procedure for cartesian closed categories
with binary coproducts has been presented in Ghani’s the-
sis [Gh95a] (see [Gh95b] for a summary) although the
proof involves intricate rewriting techniques whose details
are daunting. Our method described here is quite different
and we believe conceptually simpler.

An algorithm for type-directed partial evaluation for a
call-by-value typed lambda calculus with sums has been
given by Danvy [Da96, Da98] and Filinski [Fil01]. This
algorithm uses continuations and is therefore also quite
different from ours. In particular, it does not decide equal-
ity in cartesian closed categories with binary coproducts.

Like Ghani and Dougherty and Subrahmamyam, we
only consider the case of finite non-empty coproducts, that
is, an initial object (empty type) is not part of the structure.
We conjecture that the present approach can be extended
to full bicartesian closed categories including initial ob-
jects. However, this complicates the structure of our nor-
mal forms, and we have not yet completely checked that
all properties hold for the extended language.

Outline of Proof
Let � be a lambda theory. Our aim is to decide if

� �"!$#&%('�#�)+* �,�
that is, if two possibly open terms

#-%
and
#�)

of type � are
equal wrt � , where

�
is a type environment . We associate

with each term
#

a normal form .0/01 #&2 . In this paper, these
normal forms are not themselves terms, but there is a func-
tion 3 mapping normal forms to terms in such a way that
the following two properties hold (cf. [CD97, CDS97]):

NF1
� �"! 3415.0/01 #&2627'�#

NF2
� �"!$#&%('8#�)

implies .9/01 #:%;27' .0/01 #�)02 .
This implies that

�<�=!>#?%@'A#�)
if and only if .9/01 #:%B2�'.9/01 #�)02 , so that comparing normal forms will yield a deci-

sion procedure for � .
When � = the typed lambda calculus with

���
-

conversion, the authors and coworkers showed inC
AHS95 � CDS97D how to obtain a function .9/ by in-

verting the presheaf interpretation of � . One defines
two natural transformations EGF * C C �(D DIH JLK>1M� 2 andN F * JLOP1M� 2 H C C �(D D , where J K>1M� 2 is the presheaf of
normal forms and JLOP1M� 2 is the presheaf of neutral terms
of type � from � . Given a typing judgement

�<��!Q#�* � ,
where

� '�R=%S* � % �BT0TBT�� R4UI* � U , we define

.0/01 #&27' EV1 C C # D DW1 N 15X0Y 26262
where X0Y is the sequence 1 R�% �0TBTBT=� R4UZ2 . Since

C C\[ D D is an
interpretation, we have immediately that

�]�^#-%_'`#9)
implies

C C #:% D D ' C C #9) D D , and hence NF2 follows and NF1 is
proved by induction on

#
, using for example logical rela-

tions.

How do we obtain a function .9/ when we add strong
sums to � ? The problem is that although the category
of presheaves has coproducts, a difficulty arises when we
try to invert the interpretation of coproducts. The maps E
and N are defined by induction on types, so in particular
we need to define N F=a6bcFcd in terms of N F=a and N Fcd . But
coproducts in presheaves are calculated pointwise so how
do we for example define N F a b�F d�1fe 2$g C C �ihBD D Ykj C C � % D D Y
for a neutral term

�l� e * � h j � % ? Since variables are
neutral terms, we must in particular define N F a b�F d 1 RV2 , but
therer is no sensible way to decide whether this should be
in the first or the second disjunct?

As we shall show, the solution of this problem is to in-
troduce an appropriate topology and consider the sheaves
for that topology. This will give us a way to “amalga-
mate” the contributions of N F=a and N Fcd in the definition
of N F=ambcFcd .
Plan of the paper
In Section 2 we formally define the typed lambda calculus
with strong sums and show how it yields a free cartesian
closed category with binary coproducts. In Section 3 we
introduce our normal forms, and the auxiliary notions of
pure normal forms and neutral terms. The main idea is
to introduce a parallel case statement, and impose vari-
able conditions and a condition of redundancy-freeness to
obtain uniqueness of normal forms. In Section 4 we in-
troduce the category of constrained environments, where
objects are environments (type assigments) equipped with
equational constraints. This wil serve as the underlying
category of our Grothendieck topology which is defined
in Section 5. There we also introduce the category of
sheaves for this topology and its bicartesian closed struc-
ture. This yields a canonical interpretation of the syntax
in the category of sheaves and in Section 6 we show how
to invert this interpretation and obtain normal forms.

2 Syntax
We follow the treatment of sums in natural deduction, as
in [GLT89, pp 80-81]. For ease of presentation, we restrict
ourselves to one base type.

Types are given by the grammar

� *n*o'8p(q �8�r� q �tsu� q � q � j �
Terms are given by

# *n*o' RQq6vZR T #�q6#w#xq;yz# � #&{�qW| h-1 #�2cqW|"% 1 #&2�qByz{�q} hG1 #&2�q } % 1 #�2cqB~ 1 R T #&2 1 R T #&2c#
The Case term

~ 1 R h�T # h 2 1 R=% T #?%;2>#�) simultaneously
binds

R h in
# h and

R"%
in
#?%

.
A type environment

�
is a finite function from variables

to types. The typing judgement
�_��#k* � meaning

#
has



type � in type environment
�

is defined in the obvious
way. For example, the rule for Case is:

1 � � R4��* � �w�I#���*���2 �M��� hB� %�� � �I#,* �@h j � %� �I~ 1 R h�T # h 2 1 R"% T #?%B2c#�*-�

Definition 2.1 Equality between terms
�l� [ ' [ * �

is the least (typed) congruence generated by the following
rules (omitting types to improve readability):

1 � 2 1 v�R T # h 25#?%('�# h C #?%B�&R D1 � 2 #+'�vZR T #cR � if
R��g���� 1 #�2

Proj
� |V� 1 yM# h:� #&%B{627'�#��

SP
#+'ty�| h�1 #&2 � |=% 1 #&26{

Unit
#S'^yz{

In
� ~ 1 R h�T # h 2 1 R"% T #?%;2 } � 1 #�)02�'8#9� C #�)���R4� D

Coprod
~ 1 R h T } h 1 R h 2�2 1 R % T } % 1 R % 2m2w#�'8#

Distrib
# 1 ~ 1 R h T # h 2 1 R % T # % 2�# ) 27'~ 1 R h T #w# h 2 1 R % T #�# % 2c# )
if
R h � R % �gu��� 1 #&2

We will refer to this equational theory as BiCCC. The key
categorical axiom (Coprod) is dual to (SP) and guaran-
tees uniqueness of the co-pairing arrow out of a coprod-
uct. BiCCC entails all the usual commutative conversions
for sums, [GLT89], pp. 80-81.

It can be shown (cf. [LS86, CDS97]) that the free al-
most bicartesian closed category � h over one base objectp

can be obtained as the category whose objects are type
environments and where a morphism from

��'�R % *
� % �BT0TBT=� R4��* � � to � %�* � % �0TBTBT=�m� U�* � U is a se-
quence of terms 1 #?% �BTBT0T�� #�U�2 , modulo BiCCC equality,
where

�<��#���* � � . Freeness means that for each BiCCC� and object
C C p D D g � we have a unique structure- and

equation-preserving interpretation functor
C Cn[ D D * �7h�H�� .

3 Normal Forms

Normal forms are defined simultaneously with pure nor-
mal forms and neutral terms. Normal (and pure normal)
forms are not genuine terms, but defined inductively by
the clauses below. If

�
is a type environment we write���V�"  ¡,* � , resp.

�l�V¢��" <¡�* � , resp.
�l�"�"£<¡�* � to

mean that expression
¡

is a normal form, resp. pure normal
form, resp. neutral term of type � . We write

��� 1 ¡62 for the
set of free variables occurring in

¡
. We write ¤S¥Z¦:§�¨Z©B1 ¡62

for the set of guards of a normal form
¡
: this will be de-

fined below as part of the rule for forming normal forms.

R g
dom 1 �w2� � �"£ R�*�� 1 RV2

� � �"£ e *:p� � ¢��"  e *:p� �"¢��V �yf{x* �
� � ¢��V  ¡ h * � h � � ¢��"  ¡ % * � %� � ¢��"  y�¡ h � ¡ % {x* � h su� %� �V�"£P¡�* �ih,su� %� �V�"£ª|4� 1 ¡62(* � � « g 9¬Z�BX:�
� � ¢��V  ¡�* � �� � ¢��"  } � 1 ¡62x* � h j � % « g 9¬��0X?�

� �V�"£ e * �A�r� � �V¢��" k¡* �� �V�"£ e ¡�* �� � Rc* � � �"  ¡�* �� �V¢��" >vZR T ¡x* �A�r�
where in the last rule we have the variable condition thatR�gu��� 1ze 2 for each e g ¤S¥Z¦:§�¨Z©B1 ¡62 .

We have two rules for forming normal forms:

(a)
� �V¢��" k¡* �� � �"  ¡�* � and ¤S¥Z¦?§�¨�©91 ¡62�'A®

(b) Let ¯ ' �e % �0TBT0T;��e U � be a nonempty finite set of
neutral terms (so we assume the e � are pairwise dis-
tinct). For each ° * ¯±H²�¬��BX:� we use the abbrevi-
ation

�w³�'8� � R"%&* � %³:´nµ dW¶ �0TBT0TB�
RVU=* � U ³:´nµW· ¶ :

1 � � �"£ e � * � �h j �
� % 2 �M����% �o¸o¸o¸ � U-�1 � ³ � �"  ¡ ³ *-��2 ³&¹ ºk»�� hB� %��� �V�" k¼ 1z¯½�01 R"%�¾0¾B¾mR4U T ¡6³-2m³-2�*��

and

¤S¥Z¦?§�¨�©01 ¼ 1z¯½�91 R"%�¾B¾0¾6R4U T ¡6³�26³G262�' ¯
where 1 ¡ ³ 2 ³�¹ ºk»�� h0� %m� is a family of normal forms
satisfying the following two side conditions:

Variable-condition: for each e g ¤S¥Z¦:§�¨�©91 ¡�³-2 we
have  R=% �0TBTBT0� RVU �¿ ��� 1ze 2�À'A® .

Redundancy-freeness: The family 1 ¡m³�26³ is not re-
dundant at any e � g ¯ , where 1 ¡ ³ 2 ³ is redun-
dant at e � whenever for all Á * ¯ÃÂ@�e � �lH9¬Z�BX:� ¡WÄ9Å µ5ÆzÇ» hmÈ and

¡WÄ9Å µ5ÆMÇ»�% È are equal and nei-
ther contains the variable

R �
.

The variables
R=% �BT0TBTB� R4U become bound in the

¼
-

construct. For brevity we shall often use the alterna-
tive notation

¼ 1z¯½�91 ¡6É³ 2m³G2 , where the
¡6É³ range over

abstractions
R % �BT0TBT;� R U T ¡ ³ .



The idea is that
¼

performs a simultaneous case split
over all the “guards”. For example,

¡ ³ Å µ6Ç» hmÈ corresponds
to a branch to be taken when e is of the form } h�1 RV2 .
Example 3.1 The following examples show how the
side-conditions ensure uniqueness of normal forms as
computed by .0/ in Section 1.1. Let for simplicity the vari-
ables Ê (possibly with indices) in the examples below have
type

p
, so that they are normal terms.

1. The normal form of
vZË T ~ 1 R�% T Ê9h 2 1 R"% T Ê %B2 � will be¼ 1W9�V�-�01 R"% T ¡6³G26³�2 where
¡�Å Ì Ç»�� È '�vZË T Ê � . Note that

the expression
v�Ë T ¼ 1W9�4���01 R=% T ¡6³-2m³G2 , where

¡ÍÅ Ì Ç»+� È 'Ê � , violates the side condition for (pure) normal
forms of

v
-form.

2. The normal form of the term
~ 1 R=% T ~ 1 R4) T Ê9h�h 2 1 R4) T Ê0h %;2 � )92
1 R % T ~ 1 R ) T Ê % h 2 1 R ) T Ê %�% 2 � ) 2
� %

will be
¼ 150� % �6� ) �-�01 R"%ÍR4) T ¡6³�26³�2

where
¡�Å Ì
d Ç»�� �
Ì�Î Ç»�Ï È ' Ê �ÐÏ . Note that the expres-

sion
¼ 150� % �-�01 R"% T ¼ 1W9� ) ���01 R4) T ¡6³ dmÑ ³

Î 26³ Î 26³ d 2m2 is not a
normal form since it violates the variable-condition:R=%

is not free in the guard � ) of the normal form¼ 1W9� ) ���01 RV) T ¡6³ dmÑ ³
Î 26³ Î 2

.

3. The normal form of
~ 1 R T Ê 2 1 R T Ê 2 � will be Ê . Note

that
¼ 1W9�4���01 R T Ê 2 ³ 2 is not a normal form as 1 R T Ê 2 ³ is

redundant at � .
4. Note however, that the normal form of

~ 1MÊ4T Ê 2 1zÊZT Ê 2 �
will be

¼ 150�V�-�91MÊ4T Ê 2m³?2 which is not redundant at �
because of the variable condition in the definition of
redundancy.

Definition 3.2 The function 3 mapping
����Ò�¡@* � withÓÔg 9Õ � ��Ö7Õ � ��Õ@×i� to terms

�<� 3V1 ¡62(* � is defined in
the following way:
� 3 commutes with all the term formers except

¼
.

� 3V1 ¼ 1z¯ÙØA&e?���01 ¡ ³ 2 ³ 2m2Ú'±~ 1 R h T # h 2 1 R % T # % 2 3V1ze 2 ,
where

# � ' 3V1 ¼ 1f¯½�01 ¡WÄ9Å µ5Ç»�� È 2 Ä 262 .
It is easy to see that up to BiCCC equality this does not
depend on the choice of the witnessing term

# Y and on the
order of the guards.

4 Neutral constrained environments
Like Dougherty and Subrahmanyam [DS95] and Fiore
and Simpson [FS99] we need to supply our type envi-
ronments with constraints. These will be the objects of a

category of constrained environments Û , where the mor-
phisms will be injective renamings. The constraints are of
the form e ' } � 1 RV�f2 and express which branch a certain
guard e takes. This is the idea behind our Grothendieck
topology on Û : a “covering” expresses case-splitting.
This use of Grothendieck topologies is closely related to
[FS99] where they were used for proving a definability
result for a language with coproducts.
Definition 4.1 A neutral constrained environment, envi-
ronment for short, is a pair

�Pq5Ü
where

�
is a type environ-

ment and
Ü

is a set of constraints of the form e ' } h 1 R h 2
or e ' } % 1 R % 2 where

�½� �V£ e * � h j � % and
R h * � h

(resp.
R % * � % ) is contained in

�
and moreover,

� no two distinct constraints involve the same neutral
term, for example,

Ü
cannot contain e ' } h-1 R h 2 ande ' } % 1 R"%02

� no two distinct constraints refer to the same variable,
for example,

Ü
cannot contain e ' } h-1 R h 2 and e É '} h�1 R h 2 unless e and e É are identical.

A morphism from environment Ý q�Þ to environment
�Pq6Ü

is given by an injective function ß * dom 1 ��2 H dom 1fÝ 2
satisfying Ý�1zß�1 RV2m2�'à� 1 RV2 and ß�1fe 2�' } � 1Mß�1 RV2m2 is in

Þ
for each constraint e ' } � 1 RV2 in

Ü
. In this way the environ-

ments form a category Û in which composition is com-
position of functions.

If Ý extends
�

and
Þ

extends
Ü

then the inclusion ß *
dom 1 �w2Pá H dom 1zÝ 2 defines a morphism from Ý q�Þ to�Iq5Ü

which we call a projection.
We are interested in studying equality of terms relative

to a neutral constrained environment. The following defi-
nition is due to [DS95].
Definition 4.2 Let

�Pq6Ü
be an environment and âã be a list

of dummy terms of the same length as
Ü

and of appro-
priate (to be explained) type. A (variable-binding) type
environment

� Yä�åæç C D is defined as follows.

� Yä�è C D ' C D
� Y�� é a ¹ F=a äMåZ� µ5êcë a ´ é a ¶æç � ç d

C D '~ 1 R h T � Y�ä�åæç C D 2 1 R % T ã % R % 2 3V1ze 2
� Y�� é d ¹ F d äMåZ� µ5êcë d ´ é dW¶æç � ç a

C D '~ 1 R h�T ã h R h 2 1 R=% T � Yxä�åæç C D 2 3V1ze 2

Note that
� Y�äMåæç C # D binds all variables mentioned in

Ü
.

Given two terms
�ì�<# % *4�

and
�Ú� # ) *V�

we write�Iq5Ü_�ª# % '8# ) *��
to mean that

� É �I� Yxä�åæç C # % D 'A� Yxä�åæç C # ) D *��



in the theory BiCCC for all appropriate
� É

and âã . Here
âã must be chosen such that the terms

� Y�äMåæç C #�� D are type
correct and

� É
is obtained from

�
by removing the vari-

ables mentioned in
Ü

and possibly adding any extra free
variables occurring in the dummy terms âã .

Note that ordinary type environments have no con-
straints but it follows immediately from the above defi-
nition that

�q ®+�I#?%('8#�)
implies

� �P#?%('�#�)
.

5 Sheaves over environments
We consider the functor category íÛ î0ïñð' ò"óBôMõmö�÷ñø

of
presheaves and natural transformations between them. We
recall the following definitions of the structure of íÛ . A
presheaf is given by a family of sets K Y�äMå indexed by
environments and for each morphism ß * Ý q�Þ H �Pq6Ü
a function K�ù * K Y�ä�å HúK�û ä�ü such that K % ' X andK�ù o ý ' K ý o Kwù . If þ g K Y�äMå we may write þ�ÿ û äMü forK�ù=1Mþ 2 in case ß is clear from the context. This notation
will in particular be used when ß is a projection.

A natural transformation from presheaf K to presheaf�
is given by a family Á Yä�å of maps Á YäMå * K Y�ä�å H� Yxä�å such that

� ù o Á Y�ä�å ' Á:û ä�ü o K ù (naturality). If þ gK Y�ä�å we may write Á=1Mþ 2 for Á Y�ä�å 1zþ 2 . Naturality then
reads Á=1Mþ 2 ÿ û äMü ' Á"1zþ�ÿ Yä�å 2 .

As any category of presheaves, the category íÛ is bi-
cartesian closed, that is, supports the interpretation of the
type formers �Q�:s(�Í��� j , (and � ). If we denote the in-
terpreting presheaves with the same symbols thus writing
e.g. K�� �

for the function space of presheaves, we have
the following explicit constructions of the type formers inò"óBôzõ ö,÷ñø

:

� Y�ä�å '  yz{ �1zK s � 2 Y�ä�å ' K Yxä�å s � Y�äMå1zK j � 2 Y�ä�å ' K Yxä�å j � Y�äMå1zK�� � 2 Yxä�å ' íÛt1\Ût1 [ � �Pq5Ü2 s�K � 2
However, as we mentioned in the introduction, we are not
able to obtain normal forms by inverting this presheaf in-
terpretation. Instead we shall consider the interpretation
of terms in the category of sheaves over a certain topol-
ogy, and show that this can be inverted.

Recall that the basis of a Grothendieck topology is a
collection of basic coverings, satisfying the Saxioms of
identity, transitivity, and stability [MM92, p111]. A cov-
ering of an object

�Pq6Ü
in Û is here a family of arrows

with codomain
�Iq5Ü

. Since, the category Û does not have
pullbacks in general, we use a modified axiom of stability
[MM92, p156]. Moreover, like [FS99] we only require
that the identity is a singleton covering, not that all iso-
morphisms are coverings.
Definition 5.1 The basis � for a Grothendieck topology
on Û is inductively generated by the following clauses:

� The identity covering containing only the arrowX Y7äzå is a basic covering of
�Pq6Ü

.

� If
�à� �"£ e * � j � and e is not mentioned inÜ

, and if the family of projections from 1 � � q5Ü � 2 �
forms a basic covering of

� � R�* � q Ü ��e ' } h 1 RV2
and the family of projections from 1 � Ï q5Ü Ï 2 Ï forms
a basic covering of

� �6� * � q Ü ��e ' } % 1M� 2 , then the
disjoint union of the projections from 1 ���4q5Ü��ñ25� and1 �"Ïq6ÜwÏ92fÏ forms a basic covering of

�Iq5Ü
.

The general concept of sheaves for Grothendieck
topologies need not be presented, since it here specialises
to the following rather digestible definition:
Proposition 5.2 A presheaf K is a sheaf for � iff
whenever

�Iq5Ü
is covered by

� � R h * � h q6Ü ��e ' } h 1 R h 2 and� � R=%�* � %�q6Ü ��e ' } % 1 R"%02 , that is,
� �"�"£ e * �ih j � % and

° h g K Y�� é a ¹ F a ä�å4� µWêcë a ´ é am¶° % g K Y�� é d ¹ F d ä�å4� µWêcë d ´ é d5¶
then there exists a unique ° g K Yxä�å (called pasting) such
that

°iÿ Y�� é a ¹ F a ä�å4� µWêcë a ´ é a6¶
' ° h

°iÿ Y�� é d ¹ F d ä�å4� µWêcë d ´ é dW¶
' ° %

The following result follows from general properties of
Grothendieck topologies and will therefore not be proved,
see [MM92] for an exposition.
Proposition 5.3

1. The terminal object in íÛ is a sheaf,

2. if Kx� � are sheaves so is K s � (cartesian product),

3. if
�

is a sheaf and K is a presheaf then K � �
is a

sheaf (function space)

4. for each presheaf K there exists a sheaf þGK (the as-
sociated sheaf or sheafification) and a natural trans-
formation

� * KàH þGK such that whenever
�

is a
sheaf and ° * K H �

then there exists a unique°�� * þGKàH �
with °�� o

� ' ° . In other words, the
sheaves form a reflective subcategory of Û ,

5. The sheafification functor þ preserves binary prod-
ucts.

6. if Kx� � are sheaves the coproduct K j � is in general
not a sheaf, but þ"1MK j � 2 is the coproduct of K and�

in the subcategory of sheaves.

7. if �w��� * K H �
and Kx� � are sheaves then the

equaliser of � and � is a sheaf.1

1PD: remove?



We write
�Pq6Ü��V�"  ¡ * � to mean that

� �"�" ^¡ *
� and, moreover, none of the neutral terms mentioned inÜ

is contained in ¤S¥4¦?§�¨�©B1 ¡62 . Intuitively, this is because
no case split is ever needed for a guard whose value is
already known through the environment. Note that there
is no need to define

�Pq6Ü½�"�"£_¡�* � and
�Pq5Ü��V¢��"  ¡,*

� , since all guards inside neutral and pure normal terms
include variables bound by

v
s. Hence the constraints in

Ü
cannot affect

¡
.

For a type � we define the presheaves Õ � 1z� 2 �Ö7Õ � 1M� 2 �mÕ�×@1M� 2 � �	��
 1z� 2 ����0§���1z� 2 as follows:

Õ � 1z� 2 Yxä�å '  ¡Ùq��Pq6Ü � �"  ¡�* ���
Ö7Õ � 1z� 2 Yxä�å '  ¡Ùq�� �V¢��" >¡�* ���
Õ�×@1z� 2 Yxä�å '  ¡Ùq�� �V�"£ e * ����	��
 1z� 2 Yxä�å '

dom 1 �w2
���0§���1z� 2 Yxä�å '  ¡Ùq��Pq6Ü �P¡�* ��� �����

where
¡�� � ¡ É

stands for
�Iq5Ü_�ª¡�'�¡ É * � .

If ß * Ý q�Þ H �Pq6Ü
and

�Iq5Ü � �"£ ¡�* � thenÕ@×�1M� 2 ù 1 ¡62Lg Õ@×�1M� 2 û ä�ü is defined by replacing each
free variable

R
in
¡

by ß�1 R"2 . The morphism parts ���0§�� ù
and Ö7Õ � ù are defined analogously.

If
RLg��	��
 1M� 2 Y(ä�å then

����
 1M� 2 ù 1 R"27' ß�1 RV2 .
If
¡�g Õ � Yxä�å 1z� 2 then Õ � ù 1 ¡62 is defined by first re-

placing each free variable
R

in
¡

by ß�1 R"2 and then plug-
ging in all the constraints mentioned in

Þ
by repeatedly

performing the following atomic restriction operation (an
analogous operation appears in Ghani’s thesis [Gh95a]
under the name “first and second residue”). .
Definition 5.4 Let

¡+g Õ � 1 ��2 Yxä�å and
�l�V�"£ e * �ih j� % . Then we define the restriction

¡ C e *o' } � 1 R4�ñ2 D of
¡

to� � R4��* � ��q Ü ��e ' } � 1 RV�f2 (along the projections) as follows.

¡ C e *Ð' } � 1 R"2 D ' ¡
, if e Àg ¤S¥Z¦?§�¨�©B1 ¡62¼ 1z¯²Ø �e:�-�91 ¡ ³ 2 ³ 2 C e *Ð' } � 1 R � 2 D ' ¼�� ð 1z¯½�91 ¡WÄ9Å µ5Ç»�� È 2 Ä 2

where
¼ � ð computes a normal form to be defined be-

low. Note that we cannot simply replace
¼ � ð by

¼
be-

cause the set of guards can become empty upon plug-
ging in a constraint, new redundancies may be created,
and the variable conditions may be violated. We de-
fine

¼ � ð 1 ® �; ¡ � 2 to be
¡

and
¼ 1f¯ Ø^�e:�-�91 ¡ ³ 2 ³ 2 to be~ � ð 1 R h T ¼ � ð 1f¯½�01 ¡ ³ Å µ5Ç» hmÈ 2 ³ 2m2 1 R % T ¼ � ð 1z¯½�91 ¡ ³ Å µ5Ç»�% È 2m2m2 e .

To compute
~ � ð 1 R h T ¡ h 2 1 R % T ¡ % 2 e we first check

whether
¡5�

depend on
RV�

and are different (see the
definition of redundancy). If not, we return

¡ h�1 ' ¡m%B2 , or
otherwise, we return

¼ 1W&e:��Øu¯_h7Øu¯ % � ¡ Ä 2 , where

¯ �c' &e ��g ¤S¥Z¦:§�¨�©91 ¡5�f2Bq R4���g���� 1ze �ñ2 �
for « ' ¬Z�BX , and the family

¡ Ä
is adjusted accordingly.

Proposition 5.5 3 defines natural transformationsÕ � 1M� 2 H ���0§���1M� 2 , ÖÕ � 1M� 2 H ���B§��1z� 2 ,Õ�×i1M� 2 H����B§��1M� 2 , ����
 1M� 2 H����0§��u1M� 2 .
If ° * �+1zÝI� ��2 is a morphism in the free BiCCC � ,

that is, a sequence of terms in type environment Ý , thenC ¡ D��H C ° ¡ D defines a natural transformation ���0§���1z° 2ì*
���B§�u1zÝ 2 H����B§�u1 �w2 . This makes ���B§��1 [ 2 a functor
from � to íÛ preserving � and cartesian products.
Proposition 5.6 The presheaf ���0§���1 ��2 is a sheaf.
Proposition 5.7 Let ���m� be types. There is a natural
transformationv � ð * 1 �	��
 1M� 2 �rÕ � 1z� 2m2 HrÕ � 1z�A�r� 2
When applying

v � ð to a normal form¼ 1f¯½�01 R=% TBT0T RVU T ¡6³�26³G2 , depending naturally on a variableR
of type � , we divide ¯ into two sets ¯ h , which

contains the guards which do not depend on
R

, and ¯ % ,
which contains the guards which do. Then we return� �"!$#&%'�)(+*-,,',.(0/ a , 12(+, �4356�"!7*'%8�)(-*-,',,9(0/ d , :9; a�< ; d = ; d =.= ; a =
Compare also example 1 in 3.1.

Proposition 5.8 The presheaf Õ � 1M� 2 is a sheaf and is
isomorphic to the sheafification þV1zÖ7Õ � 1z� 2m2 of ÖÕ � 1M� 2
with the embedding

� * Ö7Õ � 1z� 2 H Õ � 1M� 2 given by� Yä�å 1 ¡627'�¡ .
If
�à� e * � h j � % , then the pasting of two normal

forms
¡ � g Õ � 1M� 2 Y�� é Æf¹ F Æ ä å4� µWêwë Æf´ é Æ ¶ is the normal form~ � ð 1 R h�T ¡ h 2 1 R"% T ¡m%B2 e g Õ � 1M� 2 Yxä�å .

Let us write
ò0> 1\Û 2 for the full subcategory of íÛ con-

sisting of the sheaves. We know from Prop. 5.3 thatò?> 1 Û 2 is a BiCCC. Since the category ��h of sequences
of types and terms is a free BiCCC there is a unique inter-
pretation functor

C C [ D D * � h H ò?> 1 Û 2 , determined byC C p D D ' Õ � 1 p?2
Concretely, this functor is given by defining a canonical
BiCCC structure on

ò0> 1\Û 2 .
6 Inverting the interpretation function
We will now define natural transformations

E F * C C �(D D=HrÕ � 1M� 2N F * Õ�×@1M� 2 H C C �(D D
in such a way that for a term

� �P#�* � ,

.9/01 #�2 î0ïñð' E FY 1 C C # D DW1 N YY 15X Y 26262
will satisfy

� �I#�' .9/01 #&2 (NF1):
� E2@ * Õ � 1 p?2 HrÕ � 1 p?2 is the identity function.N @ * Õ@×�1 p?2 H Õ � 1 p?2 is the injection from neutral

terms to normal terms given by the obvious term-
formation rules.



� EBA * �tH Õ � 1f� 2 is the constant function returning
the normal form

yf{
.N A * Õ�×@1ñ� 2 Hú� is the constant function return-

ing the element
yz{@g � . (As before we use the same

signs for corresponding syntactic and semantic no-
tions.)

� E F aDC F d ' E ¦GFn§ � ð o 1ME F a s^E F d 2 where
E ¦GFn§ � ð *Õ � 1M�ih 2 sLÕ � 1M� %02 HÃÕ � 1z�ih$sL� %02 is the unique

map satisfying
E ¦GFn§ � ð 1 ¡m% � ¡5)02�' y�¡m% � ¡5)0{ for pure nor-

mal forms
¡�% � ¡5) . This map exists by Proposition 5.8

and the fact that þ preserves products.
N F=a C FcdYä�å 1ze 27'^y N F=aY�ä�å 1 | h 1fe 262 � N FcdYxä�å 1 | % 1fe 2m26{

� Let H g C C � � ��D D YäMå ' íÛ^1 Ût1 [ � �Pq5Ü�2 sC C �iD D-� C C ��D D 2 . Then

E F IKJY�ä�å 1LH 2 ' v � ðYxä�å 1 Á 2�g Õ � 1M�A�r� 2 Yxä�å �
where

v � ð refers to the natural transformation in
Prop. 5.7 and Á g 1 �	��
 1M� 2 � Õ � 1M� 262 Yxä�å '
íÛt1 Ût1 [ � �Iq5Ü72 s ����
 1z� 2 ��Õ � 1M� 262 is defined by

Á:û ä�ü 1Mß"� RV2 '
EMJû ä�ü 1LH&û ä�ü 1zß"� N Fû ä�ü 1 RV262m2xg Õ � 1M� 2 û ä�ü �

where ß g Ût1zÝ qmÞ � �Pq5Ü�2 and
RLg��	��
 1M� 2 û ä�ü .

Let e g Õ�×@1M�^�²� 2 Yxä�å . Then N F IKJY�ä�å 1ze 2�g C C �^��,D D Yä�å is defined by

1 N F INJYä�å 1fe 2m2 û ä�ü 1Mß"��þ 2'N Jû ä�ü 1MÕ@×ù"1ze 2 1zE Fû ä�ü 1Mþ 262m2xg C C ��D D û ä�ü
where ß g Ût1zÝ qmÞ � �Pq5Ü�2 and þ g C C �(D D û ä�ü .

� E F a b�F d is the unique map (arising from the coprod-
uct property of

C C � h j � % D D ) satisfying

E F a bcF d 1 }"OLPh 1Mþ 2627' } � ðh 1ME F a 1zþ 262E F a bcF d 1 }"OLP% 1RQ 2m27' } � ð% 1zE F d 1RQ 2m2
Here }"OLPh � }LO"P% are the coproduct injections in

ò?> 1 Û 2
and } � ðh * Õ � 1M� h 2 HÙÕ � 1M� h j � % 2 is the unique
map satisfying } � ðh 1 ¡62�' } h 1 ¡62 for pure normal form¡�* � h . Similarly for } � ð% .

To construct N F=amb�Fcd g Õ�×@1z�ih j � %;2 H C C �ih j � % D D
consider e g Õ@×i1z�ih j � %B2 Yxä�å : either e ' } h�1 RV2@gÜ

in which case we put ° Yä�å 1ze 27' }"OLPh 1 N F aYxä�å 1 RV2m2 , or

e ' } % 1�� 2xg�Ü and we put ° Yä�å 1ze 27' }"OLP% 1 N FcdY�ä�å 1M� 262 ,
or e is not mentioned in

Ü
in which case we define° Y�ä�å 1ze 2 as the unique pasting of

þ h îBïñð' }"OLPh 1 N F=aY�� é ¹ F=a äMåZ� µ5êcë a ´ é ¶ 1
R"262

þ % îBïñð' }"OLP% 1 N F dY�� é ¹ Fcd äMåZ� µ5êcë d ´ é ¶ 1
R"262

It follows by straightforward calculations that all these are
indeed natural transformations.
Proposition 6.1 In order to establish NF1, that is,

# '
3V1ME F 1 C C # D D51 N 15X0Y 26262 for

� �t#l* � we define a family of
subsheaves S FYZä åUT C C �(D D YZä å sV���B§��1z� 2 Y(ä�å , such that

(i) For all þ g C C �(D D Yä�å and
� �I#,* � :

þBS FY�ä�å # � �Pq6Ü � 341zE FYxä�å 1Mþ 262'�#
(ii) For all e g Õ@×@1z� 2 Yxä�å

N FYxä�å 1ze 2 S FYxä�å 3V1ze 2
We can extend S to type environments� ' R"% * � % �BT0TBT R4U * � U by letting1zþ % �BT0TBT=��þ U�2 S YYxä�å 1z° % �BTBT0T���° U�2 iff þ � S F

Æ
Y�äMå ° � forXXW « WZY . Similarly, we can extend E and N to type

environments as well.
Proposition 6.2 (Logical Relations Lemma) If

�t�l#<*�
and âþ�S YYxä�å â° then

C C # D DW1 âþ 2 S\[Yxä�å # C â° � âR Df�
where âR are the variables in

�
.

Theorem 6.3 The equational theory BiCCC is decidable.
Proof. The above shows that the normalisation function.9/ satisfies NF1, because by (ii) and 3416X Y 2�' X Y , we know
that

N YY 16XBY 2 S YY X0Y
Hence by proposition 6.2, we know thatC C # D DW1 N YY 15X0Y 262 S FY #
Hence, by (i)

� � 3V1W.9/91 #&262�' 341zE FY 1 C C # D DW1 N YY 15X0Y 262m262'�#
As we pointed out in the introduction NF2 holds automat-
ically, and hence it follows that

� �P#?%('�#9)^] � .0/91 #?%;2�' .0/91 #�)02
This yields a decision procedure since equality of normal
forms is decidable. (Note that when writing the algorithm
for we represent the finite set of guards as a list or a tree,
so that normal forms are only unique up to the ordering
of the guards.) Furthermore, the interpretation in

ò0> 1\Û 2
as well as the definition of E4� N are clearly algorithmic.
In fact, the whole development can be formalised in ex-
tensional Martin-Löf type theory using standard methods
for formalizing category theory in Martin-Löf type the-
ory. This would be one way of demonstrating explicitly
that all functions we construct by abstract mathematical
means are computable. _
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