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Abstract

We present a new approach to introducing an extensional
propositional equality in Intensional Type Theory. Our con-
struction is based on the observation that there is a sound,
intensional setoid model in Intensional Type theory with a
proof-irrelevant universe of propositions and � -rules for � -
and � -types. The Type Theory corresponding to this model
is decidable, has no irreducible constants and permits large
eliminations, which are essential for universes.
Keywords. Type Theory, categorical models.

1. Introduction and Summary

In Intensional Type Theory (see e.g. [11]) we differen-
tiate between a decidable definitional equality (which we
denote by � ) and a propositional equality type ( �����
	�������
for any given type � ) which requires proof. Typing only
depends on definitional equality and hence is decidable.

In Intensional Type Theory the type corresponding to the
principle of extensionality

��������� ��� ��� �! #" �%$'& ( � �*) ��� ��� ��� �! + 
	,� ��� ����� ��� �' 	.-/	+01�2�3
	+04�����5 ��� ) �6� �7� ��� �! 	.-1�38�

is not inhabited. To see this let �9�;:<�>=�? � and -@�A 0CBD=�? �'E 0D�3F� A 0DBC=�? �!E 0HGJI , where addition is defined
s.t. 09K�L0MGNI . Using =�? � -elimination we can show that
� ���6O1PRQ ��� O4PRQ 	,-/	+04�S�34	T01��� is inhabited but ��� O4PRQ.UVO4P�Q 	.-1�38�
is not, because - and 3 have different normal forms.

It has been an open problem how to extend Intensional
Type Theory s.t.

�����
is inhabited without destroying other

fundamental properties.
�W�7�

is provable in Extensional
Type Theory [10], where propositional and definitional
equality are identified, but then equality and type checking
become undecidable. We may introduce a constant of type�����

but then, using the elimination constant for ��� , we can

also define irreducible terms at other types (like =�? � ). We
say that such a theory is not adequate because we can con-
struct closed terms of type =�? � which are not reducible to
numerals.

The problem of extensionality in Intensional Type The-
ory has been extensively studied by Martin Hofmann [5].
His basic insight is that extensional equality can be mod-
eled by an intensional model construction such as the setoid
model, where every closed type is interpreted by a type and
an equivalence relation. However, a naive version of the se-
toid model does not work because it does not satisfy all the
required definitional equalities. In [6] Hofmann presents a
solution using a modified interpretation of families. Unfor-
tunately, this approach does not allow definitions of sets or
propositions by recursion (large eliminations), in particular
this prohibits the introduction of universes.

Our solution is also based on the setoid model but as
the metatheory, where the construction takes place, we use
an extension of Intensional Type Theory by a universe of
propositions XVY�Z\[ , such that all proofs of a proposition
are definitionally equal. Moreover, we assume that the � -
rules for � -types and � -types (surjective pairing) hold in
the metatheory. We show that this extension of Intensional
Type Theory is decidable. Inside our metatheory we define
an intensional model which corresponds to a Type Theory –
the object theory – with the following properties:

1. Definitional equality (and hence typechecking) is de-
cidable.

2.
�����

is inhabited.

3. The theory is adequate, i.e. all closed natural numbers
are definitionally equal to numerals.

4. Large eliminations (e.g. a simply typed universe) can
be interpreted.

Acknowledgments. I would like to thank the follow-
ing people for interesting discussions, comments on earlier



drafts and proof-reading: Andreas Abel, Peter Dybjer, Mar-
tin Hofmann, Ralph Matthes, Bernhard Reus and Thomas
Streicher.

2. The metatheory

We work in an Intensional Type Theory (e.g. see [7])
with ����� B����
[	� and �
��������
[�� , i.e. every set is a
type. We assume the existence of � and � -types in ����� and
���
[	� .

We write the domain of a � -type in subscript to signal
implicit arguments which are omitted when applying a term
of this type. If unambiguous we may overload a name (like
the objects and homsets of a category). When introduc-
ing non-prefix operators we use “ � ” to mark the spaces
for the explicit arguments. The curried application of � to���  E�E'E  ��� is written �2	 ���  E'E�E  ��� � . The elements of � -
types are written as pairs 	��1��2� ��� ��� ��� �! B � 0 B � E : 	T01� ,
for � -elimination we use the projections � � ���� . Complex
� -types are introduced using named projections. The type
annotations can be omitted if they can be inferred from the
context.

The definitional equality includes the � -rules1:

A 0 B � E -/	T01� � - 0 not free in -
	�� � 	����S�� � 	������ � �

As already indicated in the introduction our construc-
tion hinges on the existence of a proof-irrelevant universe
of propositions XVY Z�[NB����
[	� and XVY�Z\[ �!�
��� . The in-
tuition is that XVY�Z�[ contains only sets with at most one in-
habitant. This is reflected by decreeing that any two proofs
of a proposition are definitionally equal:

"$#&% B XVY�Z�[ "$#(' *) B % +-,*./.10 ��2 ,3,"$#(' �4) B %
We introduce 5 �6 B XVY�Z�[ as basic propositions together
with the constructor 7 B85 and the absurdity elimination
constant 6:9� B;6 5 � for any type � . Furthermore we
close XVY Z�[ under � and � -Types:
"$#=< B>�
��� " �0 B <?#=% B XVY�Z\[ � �A@ ,3.B+"$# � 0 B < E % B XVY�Z�[
"$#=% B XVY�Z�[ " �0 B %C#=D B XVY�Z\[ � ��@ ,*.E+"$# � 0 B % E D B XVY�Z\[

Note that the domain of a propositional � -type may be a set,
we will denote this specific instance of a � -type by F40JB< E %

. If
%  D B XVY�Z�[ and

D
does not depend on

%
we

1We omit the assumptions that all the terms have the appropriate types.

write
%HGID

for � 0 B % E D . It is not necessary to introduce
a propositional equality in the metatheory.

We assume the existence of inductive types like the type
of natural numbers = ? � BJ����� with constructors I B
=�? � *K B = ? � 5 = ? � and a family of elimination constants:
Assume ��	+04� BI���
[�� for 0 B =�? �

L O1PRQ� B ��	,I �5 	T� � �6O1PRQ ��	�MD� 5 ��	�K!	�MD�R���5 � � �6O4PRQ ��	�MD�
subject to the usual equations for primitive recursion.

We say that a Type Theory is decidable if definitional
equality is decidable. This entails the decidability of type
checking. A theory is consistent if it is logically consistent
(not all types are inhabited) and equationally consistent (not
all well typed definitional equalities hold). It is adequate if
all closed terms of type =�? � are definitionally equal to a
numeral (i.e. a term of the form K�NR	,I � ).
Proposition 1 (Properties of the metatheory) The exten-
sion of Intensional Type Theory by a universe of proof ir-
relevant propositions and � -rules described above is decid-
able, consistent and adequate.

Proof (Sketch): It is well known that the standard O -
reduction excluding the � -rules and proof-irr is terminating
and Church-Rosser (e.g. see [1]). On the normal forms we
introduce a structural equivalence which incorporates the � -
rules and proof-irr. We show that this equivalence is decid-
able and that two well-typed terms are definitionally equal
iff their normal forms are structurally equivalent. Hence �
is decidable. It is standard that the decidability of equality
entails the decidability of type checking. Logical consis-
tency follows from strong normalisation. Equational con-
sistency can be derived from Church-Rosser and the fact
that the congruence does not affect = ? � , hence IJK�PK!	TI7� .
Adequacy holds since the numerals are the only closed nor-
mal forms of type =�? � . Q
3. The object theory

In this section we shall specify the object theory, which
represents our solution to the problem of extensionality.
We summarize here the essential properties of this theory,
which is an extension of basic type theory with � -types
(the logical framework or

A ) ) including the � -rule for � -
types. As a basic type we assume a type of natural numbers
=�? ��R ���
[	� with the constants and equations as defined in
the previous section.

The object theory features an equality type

���8�
	T0D�S8� R ���
[	� T � R ���
[	�4�0C�S R ��U
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with the constants

,���� � R ��0 R � E ��� � 	+0C�04�
K���� K � �	� ��� ��� �! R � � & 
 � � 	+��� � 	+0D*S8��� 5 : 	T01� 5 : 	�S8�

,������� R � �	� � � S R : 	+04� E
��� �6� �! 	�K���-K ����� ��� ��� �' 	 ,��� �
	+01�2�S8�S*S8�

� ��� �	� ��� ��� �! R;�W�7� �	� �6� �6� �! 
,����� corresponds to the O rule for the usual definition of
intensional identity types. Here we require only that this
equality is provable for propositional equality. The only
definitional equality we postulate is that any two equality
proofs are definitionally equal:

' �4) T ' *) R ���8�
	��S � � U
To show that our construction works for large elimina-

tions we include a simply typed universe, given by a type� R ���
[�� and a family
��� 	�� � R ���
[	� for any � R�� with

the following constants:

� ? � R��
? ,3, R�� 5 � 5 �

s.t. the following equalities hold:

��� 	 � ? � � � =�? ���� 	,? ,3, 	 ����2��� � ��� 	 < � 5 ��� 	�� �
Our goal is to verify that such a Type Theory exists and

is also decidable, consistent and adequate. The common ap-
proach to introduce Type Theories is syntactical: decidabil-
ity can be verified by a combination of a Church-Rosser-
theorem and strong normalisation. Our impression is that
the approach fails here.

As indicated in the introduction we shall follow a differ-
ent path here: we define a model of Type Theory inside our
type theoretic metatheory and verify that it is has all the re-
quired properties. This can be summarized in the following
theorem:

Proposition 2 (Existence of object theory) There is a
model of type theory with constants and equalities inter-
preting the object theory defined above, which is decidable,
consistent and adequate.

4. The model construction

The notion of model we are using are categories with
families as introduced by Dybjer and Hofmann [3, 7]. This
is an intensional notion of model, i.e. definitional equalities
in the object theory are interpreted by definitional equali-
ties in the metatheory. Such intensional models always give

rise to a decidable theory since definitional equality in the
metatheory is decidable.

We give a detailed presentation of categories with fami-
lies in appendix A. The basic idea is to define a category
( � .�� ) of semantic contexts and context morphisms. Se-
mantic types ��� and terms ��� can be interpreted as a func-
tor from � .�� to the category of families of sets s.t. ��� is
the first (set) component of this functor and ��� the second
(family) component. We then show how to interpret the
empty context, context extension and � -types. The inter-
pretation of the syntax and the soundness theorem are given
in [7], section 3.5.

It is cumbersome to check all the details of the model
construction, which we will only sketch here. Hence we
found it useful to employ the LEGO system [9]. One prob-
lem we faced is that LEGO (or any other implementation of
Type Theory) does not implement the metatheory described
in section 2. As a workaround we use LEGO with addi-
tional constants which � -expand elements of � and � -types
and map all elements of propositional types to a canoni-
cal constant. All those terms are identities in our intended
metatheory. We allow ourselves to decorate any type with
those expansion terms. See [2] for a partial implementation
of the model in LEGO.

4.1. The category of setoids

The basic concept of the model construction are setoids,
i.e. sets with an equivalence relation. We shall use setoids
to interpret contexts hence we define  B!� .�� by the fol-
lowing structure (i.e. a � -type with named projections):

 #"�$ Q B �����
�&%(' � B  5  5 XVY Z�[

 *)+$-, B F ��� '/.1032 04%('N0
 *"35�6 B F � & 
 � '/.1032S	T07%(' S8� 5 	�S8%('N01�
 Q ) P�9 " B F � & 
 & : � '/.1032

	T07% ' S8� 5 	�S8% '<; � 5 	+07% '&; �
In the sequel we shall often omit the index of % if it is ob-
vious which setoid is meant.

It is important to note that % is propositional, hence we
do not have to state any equalities regarding the inhabitants
of % . Categorically any setoid is a trivial groupoid, i.e. a
category where every morphism is an isomorphism.

Morphisms between setoids - B=� .�� 	+ > � correspond
to substitutions in the syntax. They are given by functions
between the sets which respect the equivalence relation:

-@? 9 B  "+$ Q 5 > "+$ Q
- )+$A"+B B F � & 
 � ' .1032S	T07% ' S8� 5 	,-	? 9 	+04��%DC -@? 9 	�S8���

The definition of identity and composition and the verifica-
tion of the categorical laws is straightforward (but requires
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the � -rules for � and � -types). The fact that - )�$A"+B is propo-
sitional is not essential here, but simplifies the verification.

4.2. Types and terms

Since setoids are groupoids, it seems natural to define
types over a fixed object  #B&� .�� as functors from  to
� .�� . This is essentially the approach we take, but we only
require the functor laws to hold up to the internal equiva-
lence of setoids. Hence, a semantic type

< B ��� 	� F� is
given by the following structure:

< ? 6 B  *"+$ Q 5 � .��< " ��� " Q B � � & 
 � '/. 0322	+07%('4S �5 < ? 6V	+01� "+$ Q 5 < ? 6V	�S8�A"+$ Q< " ��� " Q�� B F � & 
 � ' . 032 & � �����
	 
 & �!& � ���� � � �' .1032 	 �#%��2�5 	 < " ��� " Q 	 ' *� ��% < " ��� " Q 	 ' 3�����< )�$-, � B F �6� '/. 032 & � �� � � � �' . 032< " ��� " Q 	+ )+$-, 	T01�2*� ��%?�< Q ) P9 " � B F � & 
 & : � '/. 032 & � � � ��� 	 
  & � � � 
 � 	 :  & � �� � � � �! .1032< " ��� " Q 	 )� < " ��� " Q 	 ' *� ����% < " ��� " Q 	+ Q ) P�9 " 	 ' 3)6�S*� �
< ? 6 is the object part of the functor,

< " ��� " Q the morphism
part, where

< " ��� " Q�� corresponds to the condition that a mor-
phism between setoids has to preserve the equivalence rela-
tion.

< )+$-, � and
< Q ) P9 " � correspond to the functor laws up

to the internal equivalence of setoids ( % ).
Semantic types form a presheaf, i.e. given

< B � �
	�> �
and a setoid morphism - B � .�� 	� > � we can construct< T - U B � �
	+ F� s.t. identity and composition is preserved.
This corresponds to substituting in a type syntactically.< T - U is given by

< T - U ? 6 � A 0 B4 *"+$ Q E < ? 6%	.- ? 9 	T01���< T - U " ��� " Q � A 0D�SMB=> "+$ Q E A ' B 	T07% C S8� E< " ��� " Q 	,- )�$A"+B 	 ' ���< T - U " ��� " Q�� � A 0D�SMB=> "+$ Q  ' B 04% ' S E< " ��� " Q�� 	.- )+$A"+B 	 ' ���< T - U )�$-, � � A 0 B4 "+$ Q E < )�$-, � 	,-@? 9 	+01�R�< T - U Q ) P9 " � � A 0D�S4 ; B7 *"+$ Q EA ' B 	T07%(' S8�S3) B 	�S8%(' ; � E< Q ) P�9 " � 	,-�)+$A"+B8	 ' �S -	)+$A"+B\	 )6���
To see that

< T - U )+$-, � and
< T - U Q ) P�9 " � have the correct types

we need that

-	)�$A"+B\	+ *)+$-,1	+01�R� �< #)�$-,�	,- ? 9 	+01�R�
and

-	)�$A"+B8	+ Q ) P�9 "2	 ' 3)6��� �& Q ) P9 "2	,-	)�$A"+B\	 ' �S -	)+$A"+B8	 )6���

Both are instances of proof-irr since �&%@�<B XVY�Z\[ .
The functor laws

< T � C U � <
< T -�� 3EU � < T - U T 3�U

can be verified automatically exploiting the fact that � is
decidable.

Given a type
< B ���
	+ � in a context  we define the

set of semantic terms � B ��� 	+  < � , corresponding to the
judgments

" # � R � . Since types correspond to func-
tors terms correspond to global elements of a functor, i.e.
to families of elements in

< ? 6V	+01� "+$ Q indexed by 0NB! *"�$ Q
which respect the equality. This can be spelt out as follows:

� Q 6 B ��0 B  "�$ Q E < ? 6 	T01� "+$ Q
� )+$A"+B B F � & 
 � ' . 032 & � � � ��� 	 
  < " ��� " Q 	 ' �� Q 6 	T01��� %  � � � 
  � Q 6 	�S �

Note that we have to use
< " ��� " Q to define what we mean

by preserves equality, since the images of equal elements in
 end up in different slices of

< ? 6 . As for types we also
have to define the effect of substitutions on terms, i.e. given
� B ��� 	+  < �2�- B � .�� 	�> � F� we define

� T - U B ��� 	�>  < T - U+�
� T - U Q 6 � A 0 E � Q 6 	,- ? 9 	+01�R�
� T - U )�$A"+B � A 0D�S4 'DE �A)+$A"+B\	.-	)+$A"+B8	 ' ���

We also have to check that this construction preserves iden-
tity and composition:

� T � C U � �
� T -�� 3EU � � T - U T 3EU

Note that these equations are only well typed if the presheaf
laws for

< T - U hold. Again they can be checked automati-
cally, see [2].

4.3. Contexts

We have to define an interpretation of the empty context
� B � .�� :

� "+$ Q � 5
04%�� S � 5

This is a terminal object in � .�� .
Given a context  B � .�� and a type

< B<��� 	� F� we
can construct a new context  E < which syntactically corre-
sponds to introducing a new variable of type

< B ��� 	� F� .
The non-propositional components of  E < are given by:

	+ E < � "+$ Q � � 0 B7 "+$ Q E < ? 6 	+04� "+$ Q
	T0D3��� %(' �  	�S4��2� � � ' B 	+0 %(' S � E< " ��� " Q 	 ' *� ��%  � � � 
  �
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Note that � -Prop in its dependent form is essential to type
%(' �  .

We have to show that % ' �  is an equivalence relation.
Reflexivity follows from  )+$-, and

< )+$-, � . Transitivity can
be shown similarly using  Q ) P�9 " and

< Q ) P�9 " � . To show sym-
metry assume 	 ' 3)6��BJ	+0C*� �D% ' �  	�S43��� , i.e.

' B 0 %;S
and ) B < " ��� " Q 	 ' *� � % � . Clearly

'�� �  "+5�6 	 ' ��B>S %<0 ,
we have to construct ) � B < " ��� " Q 	 '�� ��2� % � . This can be
derived from

< ? 6�	+01� "35�6 	�)6� using
< )+$-, � and

< Q ) P�9 " � .
We have to define projections 0 K � and K � � , a pairing oper-

ation 	������� and an empty substitution 	,� . The projections
are needed to interpret variables — K � � is the last variable
and 0 K � corresponds to weakening. Their set-theoretic com-
ponents are given by the obvious definitions:

	.� B ��� ������9 E � .�� 	 �  � �
	,�A? 9 � A 0 E 7

	���'��� B �
	 & � ������9 &  ��� 56��  RE � - B � .�� 	 "  � � E
��� 	 	 < T - U � 5 � .�� 	 "  � E < �

	,-1����A? 9 � A 0 E 	,-@? 9 	+04�S*� Q 6 	+01�R�
0 K � B �
	 & � ������9 &  ��� 56��  RE

� .�� 	 "  � E < � 5 � .�� 	 "  � �
0 K � 	,-
� ? 9 � A 0 E � � 	,- ? 9 	+04���
K � � B �
	 & � ������9 &  ��� 56��  RE

�%- B � .�� 	 "  � E < � E ��� 	 	 < T 0 K � 	.-
� U+�
K � � 	.-
� Q 6 � A 0 E � � 	,- ? 9 	+04���

The verification of the corresponding ,�� K + components is
straightforward.

Using pairing and projection we can define a lifting op-
eration which will be useful for the definition of � -types:
given - B � .�� 	� > �S < B=� �
	�> � we define

-


B � .�� 	+ E < T - U.�> E < �
� 	,-�� 0 K � 	 � ' � �� $�� �S3K � � 	 � ' � �� $��+���

We note that

-

? 9 	T0D3��� � 	.- ? 9 	+04�S3���

4.4. � -types

Higher order types, i.e. � -types, provide the essential
test that our construction works. Given

< B � �
	+ F� and
a semantic type � B � � 	 < E  F� we define � 	 < �� � B
���
	+ � . This corresponds to the � -formation rule. Ele-
ments of � -types are dependent functions which respect
the equivalence relation, i.e. assuming 0 B  "+$ Q : - B
� 	 < � � ? 6�	+04�A"+$ Q is given by the following structure:

- ? 9 B ���HB < ? 6V	+04�A"+$ Q E � ? 6�	+0D3� �A"+$ Q
-	)�$A"+B B F � & � �� � � � �! .1032 & � � � � ��� � ������� �  

� " ��� " Q 	R	+ *)+$-,4	+01�2 ' �S�- ? 9 	�� �R��%J- ? 9 	 �2�

The associated equality is pointwise equality:

-7% ) �  & �  � � � �! 3 � F�� B < ? 6V	+01� "+$ Q E - ? 9 	 ��� % 3 ? 9 	 ���
To show that % ) �  & �  � � � �! is an equivalence relation we
exploit the corresponding conditions for %�� � � � � & �  .

To define � 	 < � � " ��� " Q assume 	.- ? 9 �-	)+$A"�B�� B
� 	 < � �-? 6 	T01� and

' BM04%4S . We have to construct

� 	 < � �A" ��� " Q 	 ' !	,- ? 9  -	)+$A"+B7��� � 	 3 ? 9 �3 )+$A"+B��
B � 	 < � �-? 6 	�S8�

We define

3 ? 9 B ��� B < ? 6V	�S8� E � ? 6V	�S43���
3�? 9 � A � E � " ��� " Q 	 '  ' � �2	,-	? 9 	 < " ��� " Q 	+ "35�6 	 ' �S3� �����

where
'�� B < " ��� " Q 	 '  < " ��� " Q 	+ "35�6 	 ' �S3���R� % � can be de-

rived using
< Q ) P�9 " � and

< )+$-, � . To construct 3 )+$A"+B assume
) BI�#%  � � � 
  � , we have to show that

� " ��� " Q 	�	+ )+$-, 	�S8�S3)6�S�3�? 9 	�� ��� % 3�? 9 	 �2� (Q)

is inhabited. Let � � � < " ��� " Q 	+ "35�6 	 ' �S3��� , � � �< " ��� " Q 	� "35�6 	 ' �23�2� . Using
< " ��� " Q � and - )+$A"+B we can derive

� " ��� " Q 	�	� )�$-, 	�S8�2*)6�S -@? 9 	 � � �R��% -@? 9 	 � � � (H)

from ) . This equality lives in � ? 6 	+0D < " ��� " Q 	� "35�6 	 ' �23�2�R� .
We can construct � B 	+0C < " ��� " Q 	+ "35�6 	 ' �S��2� % 	�S4��2� us-
ing
< Q ) P9 " � and

< )+$-, � . Applying � " ��� " Q � to � to (H) we de-
rive an equation in the same slice as (Q). (Q) can be derived
from this using � Q ) P�9 " � and � )�$-, � exploiting proof-irr.

The details of this construction and the derivation of
K�� �-K � � , ,��� � and

� , ? � K � have been formally checked, see
[2].

We have to check that our definition of � -types is
consistent with substitution, this corresponds to the Beck-
Chevalley condition in fibered category theory, i.e. given
- B � .�� 	 >  F� we have to verify:

� 	 < � � T - U � � 	 < T - U.��&T -

U+�

Again this is an instance of the decidable definitional equal-
ity.

To interpret
A

-abstraction and application in the syntax
we have to provide the constants ? + + and

� ? � . Their
� �

components are given by:

� ? � B �
	 ������9 &  ��� 56� 	  & � ��� 5�� 	 � 
 E
��� 	 �  	 � � 5 ��� 	 	,� 	 < � ���� ? � 	���� Q 6 � A 0 B7 "�$ Q *� B < ? 6 	T01� "�$ Q E � Q 6 	R	+0C*� ���

? + + B �
	 ������9 &  ��� 56� 	  & � ��� 5�� 	 � 
 E
��� 	 	,� 	 < � ��� 5 ��� 	 E < 	 � �

? + + 	���� Q 6 � A 0 B 	+ E < � "+$ Q E - Q 6�	+0 � �0 � �
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It is straightforward to verify the ,� K + components. We also
have to check the definitional equalities corresponding to O
and � hold:

� ? � 	T? + + 	 � �R� � �
? + + 	 � ?�� 	������ � �

and that both operations behave correctly wrt. substitution

� ? � 	���� T - U � � ? � 	�� T -

U �

? +-+ 	 � � T -

U � ? + + 	 � T - U �

Non-dependent function spaces are a special case of the
� -construction. Given

< �� B=���
	+ � we define

<�� � � � 	 < �&T 0 K � U+�
B � �
	+ F�

We note that 	 <�� � � 0 � 	T01� can be defined using only< ? 6 	+04�S� ? 6 	+04� and we denote this by

� � ? 6 � B � .���� � .�� 5 � .��

This observation leads to a simpler definition of the simply
typed universe.

4.5. Natural numbers

Given  B � .�� we define T T =�? � U UVB&���
	+ � by a con-
stant family:

T T = ? � U U ? 6 	T01� "+$ Q � =�? �
% � � O1PRQ � � � � � �! is defined by structural recursion, i.e. by trans-
lating the following definition into applications of

L O1PRQ� :

I %NI � 5
K!	�� ��%NI � 6
I %4K!	�MD� � 6

K!	�� ��%4K!	�MD� � � % M
Again using

L O4PRQ� it is straightforward to show that
% � � O1PRQ � � � � � �! is an equivalence relation.

The definition of T T I1U U and T T K�U U is obvious:

T T I1U U B T T =�? � U U
T T I1U U ? 9 � A 0 E I
T T�� U U B T T =�? � U U � T T = ? � U U
T T � U U ? 9 � A 0C�M E K'	�MD�

The corresponding ,� K + -components are inhabited since
I % I and K!	�� ��%?K'	�MD�W�	� %4M .

The interpretation of
L O4PRQ� is more involved using the

corresponding constant in the metatheory.

4.6. The simply typed universe

Given  B � .�� we define 
 B ���
	� F� as a constant
type similar to T T = ? � U U — T T�
 U U � � T T 
 U U ? 6 	T01� "+$ Q is given by
the inductive type generated by

� ? � BAT T�
�U U �
���� B T T�
�U U �

? ,*, 	��13��� B�T T�
�U U �

We define % � �  � �.B T T�
�U U � 5 T T 
 U U � 5 XVY�Z\[ in the same
fashion as % O1PRQ :

� ? � % � �  � � � ? � � 5
? ,3, 	��1��2��% � �  � �4? ,3, 	�� � 3� � � � 	��*%  � � � G 	 � %  � � �

�*%  � � � 6 otherwise

We define T T ��� U UDB=� � 	+ E T T�
�U U+� : T T ��� U U ? 6 is given by:

T T ��� U U ? 6 	+0C � ? � � � T T =�? � U U ? 6 	+04�
T T ��� U U ? 6 	+0D�? ,3, 	 ����2��� � T T ��� U U ? 6 	+0D3� � � ? 6?T T ��� U U ? 6 	T0D��2�
T T ��� U U " ��� " Q and the other components of the structure can be
derived from the corresponding components of

�
.

4.7. The equality type

Given  B � .��  < B ��� 	� F� we define T T ���/U U�	 < � B
���
	� E < E <�� � , where

<�� � < T 0 K � U . From now in we shall
ignore weakening morphisms and use variables to denote
projections. We define:

T T ���/U U�	 < � ? 6V	T0D3����2�A"�$ Q � �#%  � � � �' �' % � � ��� � � � 
 � � � � & �!& �  ) � 5
To define T T ���/U U 	 < � " ��� " Q assume that

	 ' 3)� �6� B 	+0C*�13�2��% ' �  � �� 	�S13� � �� � �
i.e.

' � B 0 % 0 � ,' � B < " ��� " Q 	 ' 3��� % � � and' � B < " ��� " Q 	 ' 3���<% � � . Now given ) B � % � we
know

< " ��� " Q 	 ' 3� � % < " ��� " Q 	 ' ��2� using
< �" ��� " Q . Using< ? 6V	+04� Q ) P9 " we can derive � � %;� � . The verification of the

other components of T T ��� U U is trivial because % � � ��� � � is propo-
sitional.

To define T T ,���� U U we construct

T T ,��� U U � B ��� 	T0 R  E � RB<  T T ���/U U T 	+0C*�1*� � U
T T ,���� U U �? 9 � A 0D3� E < ? 6 	+01� )+$-,
T T ,���� U U � � ? � 	*T T ,��� U U � �

In this case ,�� K + is trivial.
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Given � B ��� 	� E < � we define

T T K���� K � U U�	 < �� � � B ��� 	T0 R  3� RB< �� RB< E
T T ���/U U T 	+0C*�13��� U E �=T*	T0D*� � U.��&T 	+0D��2� U+�

T T K�� �-K � U U�	 < � � �? 9 � A 	+0C*�13��*)��S8� E
� " ��� " Q 	R	 ,���� 	T01�2*)6�S*S8�

T T K���-K � U U 	 < � � � � ? � � 	�T T K�� �-K � U U�	 < � � � �
where

� ?�� N is the
�
-fold application of

� ? � .
We also define

T T ,���� � U U 	 < �� � � B ��� 	T0 R  E � RB< E S R �&T 	+0C*� � U 
T T ��� U U T 	+0C'	*T T K�� �-K � U U 	 < �� � � T 	+0C*�1*�1
T T ,���� U U � T 	+0C*� � U �S8� U.*S �R� U+�

T T ,���� � U U 	 < � � �? 9 � A 	+0C*�1�S8� E � )+$-, � 	R	+0C*� �S*S �
T T ,���� � U U�	 < � � � � ? � � 	�T T ,������ U U 	 < �� � � �

Again ,� K + is trivial.
Assuming -1�3 B � 	 < � �A? 6 	+01� "+$ Q we define

��� @�	.-1�38�W�J� 	�� RE< T 0 U  T T ���/U U T 0D!	T? +-+ 	,-13� �SR? + + 	+313���R� U
We note that

��� @ 	,-1�3 �A? 6 	T01� "+$ Q � T T ��� U U 	,� 	 < � ���-? 6 	+01� "+$ Q

Hence we can define

T T � ��� U U 	 < � � � B ��� 	+0 R  E -1�3 R � 	 < �� � ? 6 	+01� "+$ Q E
) B ��� @�	.-1�38�S
T T ���/U U 	,� 	 < � ��� T 	+0C�-1�3 � U �

T T � ��� U U 	 < �� � �? 9 � A 	+0D -1�34*)6� E )
T T � �7� U U�	 < � � � � ? � � 	*T T � ��� U U 	 < � � � �

All elements of T T ���/U U�	 < �A? 6 	+0C*�13��� "+$ Q are definitionally
equal in the metatheory since it is propositional, hence the
required definitional equality holds.

4.8. Proof of the main theorem

Proof: The model construction above verifies our
main theorem, proposition 2. We have interpreted all the
constants introduced in section 3 and have checked that
the equational conditions hold. Equality in the model is
decidable because it is given by definitional equality in
the metatheory. We observe that it is consistent since
��� 	TI\ �7	TI7��� is not inhabited and I and �7	TI7� are not defini-
tionally equal. It is adequate because = ? � only contains
elements which are definitionally equal to numerals. Note
that we use proposition 1 here.

5. Discussion and further work

To show that setoids from a category � .�� we do not
require proof-irr, but already to have a notion of semantic
types along the lines we have described here relies on this
feature of the metatheory, e.g. see section 4.2. In the entire
construction proof-irr is needed frequently.

We are not able to show that proof-irr is essential for the
construction but experience with previous attempts (by the
author and by Martin Hofmann) does suggest this. Hav-
ing to deal with inconvertible proofs perpetrates the con-
struction and eventually leads to failure. Having proof-irr
adds some extensionality to the system, in particular since
XVY�Z\[ is closed under � -types whose domains are sets. In
the pure system it is not even provable that a � -type whose
codomain is propositional, i.e. has at most one element, is
propositional itself.

We have already mentioned Martin Hofmann’s work on
the subject [5],[6]. It is also interesting to compare our con-
struction with the groupoid model used in [8]. Note, that
the groupoid model requires an extensional type theory as
metatheory. Another difference is that the equalities corre-
sponding to K���-K � �  ,����� and

� , ? � K � have to hold strictly
(i.e. for metatheoretical equality) whereas we state them in
terms of the equalities of the respective semantic types.

We have only presented a simply typed universe to show
that our construction allows large eliminations and hence
essentially generalizes Hofmann’s construction [6]. We be-
lieve that it is possible to interpret a full dependent universe
(corresponding to �
��� in our metatheory) using inductive-
recursive definitions as introduced in [4], but we have not
yet verified all the details.

It should be straightforward to interpret quotient types
as described in [6]. Another interesting application is the
introduction of coinductive types.

Finally, it would be interesting to implement the object
theory directly, without translating it into the metatheory,
possibly using a substitution calculus for dependent types.

References

[1] T. Altenkirch. Constructions, Inductive Types and Strong
Normalization. PhD thesis, University of Edinburgh,
November 1993.

[2] T. Altenkirch. The implementation of a setoid model in
LEGO. Available on the WWW at:
http://www.tcs.informatik.uni-muenchen.de/

˜alti/drafts/setoid.html, December 1998.
[3] P. Dybjer. Internal type theory. Lecture Notes in Computer

Science, 1158, 1996.
[4] P. Dybjer. A general formulation of simultaneous inductive-

recursive definitions in type theory. Journal of Symbolic
Logic, 1997.

7



[5] M. Hofmann. Extensional concepts in intensional type the-
ory. PhD thesis, University of Edinburgh, 1995.

[6] M. Hofmann. A simple model for quotient types. In Proc.
TLCA ’95, volume 902 of LNCS, pages 216–234, 1995.

[7] M. Hofmann. Semantics of Logics of Computation, chap-
ter Syntax and Semantics of Dependent Types. Cambridge
University Press, 1997.

[8] M. Hofmann and T. Streicher. The groupoid interpretation
of type theory. In Venice Festschrift. 1996.

[9] Z. Luo and R. Pollack. The LEGO proof development sys-
tem: A user’s manual. LFCS report ECS-LFCS-92-211,
University of Edinburgh, 1992.
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A. Categories with families as models of Type
Theory

A model of Type Theory is given by the following data:

A.1. A category of contexts and context morphisms

� .�� B ���
[	�
� .�� B � .�� 5 � .�� 5 �
���

� B � ' ������9 E � .�� 	� � F�
� � � B � '�� & '�� & '�� ������9 E � .�� 	� �6� � �5 � .�� 	� � � �!� 5 � .�� 	� � � � �

which given - B � .�� 	 >  F�S�3 B � .�� 	 � � > �S�� B
� .�� 	 � �  � � � satisfies:

� ' � - � -
-�� � C � -

	,- � 38� �	� � -��%	 3 �	���
A.2. A presheaf of types

� � B � .�� 5 ���
[	�
�(T � U B � ' & C ��� �9 E � � 	�> �5 � .�� 	+ > � 5 ��� 	� F�

which given
< B ��� 	 > �S - B � .�� 	 � > �2�3 B � .�� 	+  � �

satisfies:

< T � C U � <
< T - � 3�U � < T - U T 3EU

A.3. Families of terms

��� B � ' ��� �9 E � �
	+ F� 5 �
���
�(T � U B � ' & C ��� �9 &  ��� 56� C  E ��� C 	 < �5 � - B � .�� 	+ �> � E ��� ' 	 < T - U+�

which given
< B ��� 	 > �S*� B ��� C 	 < �S�- B

� .�� 	 � �> �S�3HB � .�� 	�  � � satisfies

� T � C U � �
� T -�� 3EU � � T - U T 3EU

A.4. Wellfounded context comprehension
� B � .��

� E � B � ' ������9 E ���
	+ � 5 � .��
	.� B �(C ������9 E � .�� 	�>  � �

	���'��� B � ' & C ������9 &  ��� 56� C  E � - B � .�� 	+ �> � E
��� ' 	 < T - U+� 5 � .�� 	+ �> E < �

0 K � B � ' & C ������9 &  ��� 56� C  E
� .�� 	+ > E < � 5 � .�� 	� > �

K � � B � ' & C ������9 &  ��� 56� C  E
�%- B � .�� 	+ �> E < � E ���8' 	 < T 0 K � 	.-
� U+�

which given 
#B � .�� 	�  � �S�- B � .�� 	� > �2 < B
���
	 > � � B ���8' 	 < T - U �2�� B � .�� 	� > E < �S�3 B
� .�� 	 �  F� satisfies:


 � 	,� '
0 K � 	.-1���� � -
K � � 	.-1���� � �

	 0 K � 	��1�S3K � �C	��1��� � �
	.-1����
� 3 � 	,-�� 31*� T 3�U+�
0 K � 	,-
�
� 3 � 0 K � 	,- � 38�
K � � 	���� T 3�U � K � � 	�� � 3 �

Given - B � .�� 	+ > �2 < B=� � 	�> � define

-


B � .�� 	+ E < T - U > E < �
� 	.-�� 0 K � 	 � ' � �� $�� �2*K � �D	 � ' � �� $�� ���

A.5. Closure under �
� B � ' ������9 E � < B=���
	� F� E ��� 	� E < � 5 � �
	+ F�� ? � B � ' ������9 &  ��� 5�� '  & � ��� 56� ' � 
 E

��� ' �  	 � � 5 ���*' 	T� 	 < � �R�
? + + B � ' ������9 &  ��� 5�� '  & � ��� 56� ' � 
 E

��� ' 	,� 	 < � ��� 5 ���*' �  	 � �
which given

< B � �4	� F�S�� B ���
	� E < �S - B
� .�� 	 >  F�S*� B ��� ' �  	�� �2 � B ���8' 	T� 	 < �� ��� satisfies

� 	 < � � T - U � � 	 < T - U �&T -

U+�� ? � 	���� T - U � � ? � 	�� T -


U �

? +-+ 	 � � T -

U � ? + + 	 � T - U �� ? � 	T? + + 	 � �R� � �

? + + 	 � ? � 	����R� � �
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B. Interpretation of the syntax

We define a partial interpretation ( T T*� U U of annotated syn-
tax in a model as defined in the previous section, i.e.
terms,types and substitutions are annotated with their con-
texts and types. We assume as given an interpretation of
type constants � T " U as T T���U UMB � �
	�T T " U U+� and term con-
stants � R � T " U as T T � U UCB ��� � � 	 � � 	*T T ��U UT� .
Contexts T T " U UCB � .��

T T U U � �

T T " E 0 R ��U U � T T " U U E T T ��U U
Variables T T 0 	 & � U U B7��� 	�T T " U U  T T ��U UT�

T T 0 	 �
��� � & � U U � K � � 	 � � � 	 � ��� � � �+�

T T 0 	 � 

� � & � U U � T T 0 	8& � U U T 0 K � 	 � � � 	 � �	� � � �+� U

Substitutions T T��� 	 & � U UDB � .�� 	�T T " U U  T T � U U+�
T T U U � 	.�

T T ��SR0M� � U U � 	*T T ���U U  T T � U U+�
Types T T � 	 U U B7� � 	�T T " U U �

T T � 0 R � E : U U � � 	�T T ��U U  T T :/U UT�
Terms T T � 	8& � U UCB ��� � � 	 � � 	�T T ��U UT�

T T A 0 R � E � � U U � � ?�� 	*T T � U UT�
T T � 	 & )

��� ��� � 	 � 	��+& � � � U U � ? + + 	*T T � U UT� T 	 �  � � � 	�� �+� U
if T T " U U �CT T "�� U U and T T ��U U
�8T T � � U U

Given a definition of the following judgments:
Contexts

#="
Substitutions

"$# �� R �
Equality of substitutions

"$# ���� �� R �
Types

"$# �
Equality of types

"$# � �J:
Terms

"$# � R �
Equality of terms

"$# ��� � R �
we can state the soundness theorem (see [7])

Theorem 1 (Soundness) The partial interpretation given
above is

1. total for derivable judgments,

2. derivable equalities are reflected by equal elements in
the model.
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