
Generic Programming with Dependent Types

Thorsten Altenkirch, Conor McBride and Peter Morris

School of Computer Science and Information Technology
University of Nottingham

1 Introduction

In these lecture notes we give an overview of recent research on the relationship
and interaction between two novel ideas in (functional) programming:

Generic programming Generic programming [15, 21] allows programmers to
explain how a single algorithm can be instantiated for a variety of datatypes,
by computation over each datatype’s structure.

Dependent types Dependent types [28, 37] are types containing data which
enable the programmer to express properties of data concisely, covering the
whole spectrum from conventional uses of types to types-as-specifications
and programs-as-proofs.

Our central thesis can be summarized by saying that dependent types provide
a convenient basis for generic programming by using universes. A universe is
basically a type U : ⋆ which contains names for types and a dependent type, or
family, El : U → ⋆ which assigns to every name a : U the type of its elements
El a : ⋆—we call this the extension of the name a. Historically, universes have
been already used by Type Theory to capture the predicative hierarchy of types,
first introduced by Russell to prevent set-theoretic paradoxes:

⋆0 : ⋆1 : ⋆2 : . . . ⋆i : ⋆i+1 : . . .

If we want to avoid chains of : we can represent this hierarchy as:

U i : ⋆

El i : U i → ⋆

ui : U i+1

Here ⋆ plays the role of a superuniverse in which all universes can be embedded,
while U i is the type of (names of) types at level i. The operation El i assigns
to any name of a type at level i the type of its elements. In particular ui is the
name of the previous universe at level i + 1 and hence El i+1 ui = U i.

The predicative hierarchy of universes is necessary to have types of types
without running into paradoxes (e.g. by having a type of all types). Here we are
interested in the application of universes to programming, which leads to consider
a wider variety of smaller universes, less general but more usefully structured
than the ones above.

Related work

The idea to use dependent types for generic programming isn’t new: starting
with the pioneering work by Pfeifer and Rueß [36] who used the LEGO system
as a vehicle for generic programming, the authors of [16] actually introduced
a universe containing codes for dependent types. The latter is based on the
work by Dybjer and Setzer on Induction-Recursion [18, 19] which can also be
understood as universe constructions for non-dependent and dependent types.
The first two authors of the present notes presented a universe construction for
the first order fragment of Haskell datatypes including nested datatypes in [9]
which was motivated by the work on generic Haskell [14, 25].

Structure of the paper

We start our discourse with a quick introduction to dependently typed program-
ming (section 2) using the language Epigram as a vehicle. Epigram is described
in more detail elsewhere, see [32] for a definition of the language with many
applications, [11] for a short and more recent overview and [31] for an introduc-
tory tutorial. Epigram is not just a language but also an interactive program
development system, which is, together with further documentation, available
from the Epigram homepage [30].

As a warm up we start with a very small, yet useful universe, the universe
of finite types (section 3). The names for types in this universe are particularly
simple, they are just the natural numbers.

We soon move to bigger universes which include infinite types in section 4,
where we introduce a general technique how to represent universes which contain
fixpoints of types — this section is based on [35]. We also discuss the tradeoff
between the size of a universe and the number of generic operations it supports.

While the universes above are defined syntactically, we also present a seman-
tic approach based on Container Types (section 5), see [1–4]. However, here we
will not study the categorical details of containers in detail but restrict ourselves
to using them to represent datatypes and generic operations in Epigram.

As an example of a library of generic operations we consider the generic zip-
per [24] (section 6), which is a useful generic tool when implementing functional
programs which use the notion of a position in a data structure. As observed
by McBride [29], the zipper is closely related to the notion of the derivative
of a datatype, which has many structural similarities to derivatives in calculus.
This topic has been explored from a more categorical perspective in [5, 7]; the
presentation here is again based on [35].

We close with our conclusions and possible directions for further work (section
7).

All the code contained with these notes is available to download from the
Epigram website [12].

2 Programming with Dependent Types in Epigram

Epigram is an experimental dependently typed functional language and an in-
teractive program development system. It is based on previous experiences with
systems based on Type Theory whose emphasis has been on the representa-
tions of proofs like LEGO [26]. The design of the interactive program and proof
development environment is heavily influenced by the ALF system [27].

Epigram uses a two-dimensional syntax to represent the types of operators
in a natural deduction style. This is particularly useful for presenting programs
with dependent types—however, we start with some familiar constructions, e.g.
we define the Booleans and the Peano-style natural numbers as follows:

data (----------! where (-------------! ; (--------------!

! Bool : *) ! true : Bool) ! false : Bool)

(n : Nat !

data (---------! where (------------! ; !-------------!

! Nat : *) ! zero : Nat) ! suc n : Nat)

We first give the formation rules, Bool and Nat are types (⋆ is the type of types)
without any assumptions. We then introduce the constructors : true and false are
Booleans; zero is a natural number and suc n is a natural number, if n is one.
These declarations correspond to the Haskell datatypes:

data Bool = True | False

data Nat = Zero | Succ Nat

The natural deduction notation may appear quite verbose for simple definitions,
but you don’t have to manage the layout for yourself—the editor does it for you.
On paper, we prefer LATEX to ASCII-art, and we take the liberty of typesetting
declarations without the bracket delimiters and semicolon separators.

data
Nat : ⋆

where
zero : Nat

n : Nat
suc n : Nat

The formation rule may contain assumptions as well, declaring the arguments
to type constructors, e.g. in the case of lists:

(A : * ! (a : A ; as : List A !

data !------------! where (--------------! ; !----------------------!

! List A : *) ! nil : List A) ! cons a as : List A)

In LATEX this becomes:

data A : ⋆
List A : ⋆

where
nil : List A

a : A as : List A
cons a as : List a

Here the type-valued arguments to the constructors are left implicit. However,
as we shall see, the use of implicit arguments becomes more subtle with depen-
dent types. Hence, Epigram offers an explicit notation to indicate where implicit
arguments should be expected. The definition above can be spelt out in full:

(A : * ! (a : A ; as : List A !

data !--------! where (----------! ; !----------------------!

! List A ! ! nil _A : ! ! cons _A a as !

! : *) ! List A) ! : List A)

Here, the underscore overrides the implicit quantifier to allow the user to specify
its value explicitly. In LATEX we denote this by subscripting the argument itself,
as you can see in the typeset version of the above:

data A : ⋆
List A : ⋆

where A : ⋆
nilA : List A

A : ⋆ a : A as : List A
consA a as : List a

Under normal circumstances, Epigram’s elaborator will be able to infer values for
these arguments from the way these constructors are used, following a standard
unification-based approach to type inference. Previously, we also omitted the
declaration of A : ⋆ in the premise: again, this can be inferred by the elaborator
as well, with the natural deduction rule acting like Hindley-Milner ‘let’, implicitly
generalising local free variables.

Defining functions

We define functions using let and generate patterns interactively. The text of a
program records its construction. E.g. we define boolean not by case analysis
on its first argument:

let b : Bool
not b : Bool

not b ⇐ case b

not true ⇒ false

not false ⇒ true

Let-declarations use the two-dimensional rule syntax to declare a program’s
type: in Epigram, all top-level identifiers must be typed explicitly, but this type
information is then propagated into their definitions, leaving them relatively free
of annotation. Epigram programs are not sequences of prioritised equations as
is traditional [33]. Rather, they are treelike: on the left-hand side, the machine

presents a ‘programming problem’, e.g., to compute not b; on the right-hand
side, we explain how to attack the problem in one of two ways:

⇐ ‘by’ refinement into subproblems, using an eliminator like caseb, above; the
machine then generates a bunch of subproblems for us to solve;

⇒ ‘return’ an answer directly, giving an expression of the appropriate return
type, which may well be more specific than the type we started with, thanks
to the analysis of the problem into cases.

In ASCII source, this tree structure is made explicit using {. . .} markings: here,
we drop these in favour of indentation.

Epigram programs thus explain the strategy by which they compute values:
case analysis is one such strategy. By ensuring that the available strategies are to-
tal (e.g., case eliminators cover all constructors), we guarantee that all programs
terminate.1 To implement a recursive program, we can invoke a rec eliminator,
capturing the strategy of structural recursion on the nominated argument: recur-
sive calls have to be structurally smaller in this argument. As simple examples,
consider addition and multiplication of Peano natural numbers:

let x , y : Nat
plus x y : Nat

plus x y ⇐ rec x

plus x y ⇐ case x

plus zero y ⇒ y

plus (suc x) y ⇒ suc (plus x y)

let
m,n : Nat

times m n : Nat
times m n ⇐ rec m

times m n ⇐ case m

times zero n ⇒ zero

times (sucm) n ⇒ plus n (times m n)

It should be noted that these programs produce terms in Epigram’s under-
lying type theory which use only standard elimination constants to perform
recursion or case analysis. Programmng with rec is much more flexible than
‘primitive recursion’: it is straightforward to implement programs with deeper
structural recursion, like the Fibonacci function, or lexicographically combined
structural recursions, like the Ackermann function.

Data-type families

So far we haven’t used dependent types explicitly. Dependent types come in
families [20], indexed by data. A standard example is the family of vectors
indexed by length:

data n : Nat X : ⋆
Vec n X

where
vnil : Vec zero X

a : A as : Vec n X
vcons a as : Vec (sucn) X

Here Vec n X is the type of vectors, length n, of items of type X .
We can now implement a safe version of the head function, whose type makes

it clear that the function can only be applied to non-empty lists:

let
ys : Vec (suc m) Y

vhead ys : Y
vhead ys ⇐ case ys

vhead (vcons y ys) ⇒ y

Note that Epigram does not ask for a vnil case—vnil’s length, zero, does not unify
with suc m, the length of ys , so the case cannot ever arise.

1 The condition that the use of universes has to be stratified is present in the lan-
guage definition but absent from the current implementation. As a consequence, the
machine will accept a bogus non-terminating term based on Girard’s paradox.

More generally, we can implement a function which safely accesses any el-
ement of a vector. To do this we first define the family of finite types, with
the intention that Fin n represents the finite set 0, 1, . . . ,n − 1, i.e. exactly the
positions in a vector of length n.

data n : Nat
Fin n : ⋆

where
fz : Fin (suc n)

i : Fin n
fs i : Fin (suc n)

Here fz represents the 0 which is present in any non-empty finite set, and
fs i : Fin (suc n) represents i + 1, given that i : Fin n. Note that Fin zero is meant
to be empty: case analysis on a hypothetical element of Finzero leaves the empty
set of patterns. The following table enumerates the elements up to Fin 4:

Fin 0 Fin 1 Fin 2 Fin 3 Fin 4 · · ·
fz0 fz1 fz2 fz3 · · ·

fs1 fz0 fs2 fz1 fs3 fz2

. . .

fs2 (fs1 fz0) fs3 (fs2 fz1)
. . .

fs3 (fs2 (fs1 fz0))
. . .

. . .

As you can see, each non-empty column contains a copy of the previous column,
embedded by fs, together with a ‘new’ fz at the start.

We implement the function proj which safely accesses the ith element of a
vector by structural recursion over the vector. We analyse the index given as
an element of Fin n and since both constructors of Fin n produce elements in
Fin (sucm) the subsequent analysis of the vector needs only a vcons case.

let xs : Vec n X i : Fin n
proj xs i : X

proj xs i ⇐ rec xs

proj xs i ⇐ case i

proj xs fz ⇐ case xs

proj (vcons x xs) fz ⇒ x

proj xs (fs i) ⇐ case xs

proj (vcons x xs) (fs i) ⇒ proj xs i

Let’s look more closely at what just happened. Here’s proj again, but with
the numeric indices shown as subscripts:

let xs : Vec n X i : Fin n
projn xs i : X

projn xs i ⇐ rec xs

projn xs i ⇐ case i

proj(suc n) xs (fzn) ⇐ case xs

proj(suc n) (vconsn x xs) (fzn) ⇒ x

proj(suc n) xs (fsn i) ⇐ case xs

proj(suc n) (vconsn x xs) (fsn i) ⇒ projn xs i

When we analyse i , we get patterns for i , but we learn more about n at the same
time. Case analysis specialises the whole programming problem, propagating the
consequences of inspecting one value for others related to it by type dependency.
The extra requirements imposed on the construction of dependently typed data
become extra guarantees when we take it apart.

Exercise 1. Implement the function transpose which turns an m × n matrix
represent as an m vector of n vectors into an n × m matrix represented as a n

vector of m vectors:

let
xys : Vec n (Vec m X)

transpose xys : Vec m (Vec n X)

Predefined types in Epigram

Epigram provides very few predefined types: the empty type Zero, the unit type
One and the equality type a = b : ⋆ for any a, b not necessarily of the same
type. The only constructor for equality is refl : a = a in the special case that
both sides of the equation compute to the same value. For example,

refl : plus (suc (suc zero)) (suc (suc zero)) = suc (suc (suc (suc zero)))

Epigram has dependent function types ∀a :A ⇒B , where firstly A : ⋆ and
secondly B : ⋆ under the assumption a : A. We retain the conventional A → B

notation for function types where the latter assumption is not used. Lambda
abstraction is written λx :A ⇒ b. The domain information can be omitted in λ

and ∀, if it can be inferred from the context. Several abstractions of the same
kind can be combined using ;, i.e. we write λx ; y ⇒c for λx ⇒λy ⇒c. The rule
notation is just a convenient way to declare functions, e.g. the type of vhead
can be written explicitly as ∀ m; Y ⇒Vec (suc m) Y → Y .

Common datatypes in this paper

There are a few additional standard type constructors which we shall use in this
paper: we define a type for disjoint union corresponding to Either in Haskell:

data
A,B : ⋆

Plus A B : ⋆
where a : A

Inl a : Plus A B
b : B

Inr b : Plus A B

Epigram hasn’t currently a predefined product type, hence we define it:

data
A,B : ⋆

Times A B
where a : A b : B

Pair a b : Times A B

We also introduce the Σ-type, giving us dependent tupling: 2

data A : ⋆ B : A → ⋆
Sigma A B : ⋆

where a : A b : B a
Tup a b : Sigma A B

Exercise 2. Define the first and second projection for Σ-types using pattern
matching:

let p : Sigma A B
fst p : A

let p : Sigma A B
snd p : B (fst p)

W-types

Later in the paper, we shall also need a general-purpose inductive datatype,
abstracting once and for all over well-founded tree-like data. Tree-like data is
built from nodes. Each node carries some sort of data—its shape—usually, a
tag indicating what sort of node it is, plus some appropriate labelling. In any
case, the node shape determines what positions there might be for subtrees.
This characterisation of well-founded data in terms of shapes and positions is
presented via the W-type:

data S : ⋆ P : S → ⋆
W S P : ⋆

where
s : S f : P s → W S P

Sup s f : W S P

The constructor packs up a choice s of shape, together with a function f as-
signing subtrees to the positions appropriate to that shape. It is traditional to
call the constructor Sup for ‘supremum’, as a node is the least thing bigger than
its subtrees. We often illustrate this pattern—choice of shape, function from
positions—as a triangle diagram. We write the shape s in the apex, and we
think of the base as the corresponding set P s of positions. The function f , part
of the node hence inside the triangle, attaches subtrees w to positions p.

s

Sup

f p 7→ w•

For example, the natural numbers have two node shapes, suc with one subtree
and zero without. Correspondingly, we can use Bool for the shapes; the positions

2 Some authors call this a ‘dependent product’, as it’s the dependent version of Times.
Other call it a ‘dependent sum’, as it’s the infinitary analogue of Plus, and say
‘dependent product’ for functions, as these are the infinitary analogue of tuples. To
avoid confusion, we prefer to talk of ‘dependent function types’ and ‘dependent tuple
types’.

are given by the following type family which captures ‘being true’:

data b : Bool
So b : ⋆

where
oh : So true

let
p : So false

notSo p : X
notSo p ⇐ case p

We may now define the natural numbers as a W-type:

let
wNat : ⋆

wNat ⇒ W Bool So

let
wZero : wNat

wZero ⇒ Sup false notSo

false

Sup

let n : wNat
wSuc n : wNat

wSuc n ⇒ Sup true (λp ⇒n)

true

Sup

7→ n•

The pictures show us the components we can plug together to make numbers.
‘Two’ looks like this:

true

Sup

7→ true

Sup

7→ false

Sup

••

Lots of our favourite inductive datatypes fit this pattern. Another key ex-
ample is the type of finitely branching trees, W Nat Fin, where the shape of each
node is its arity.

Exercise 3. Construct the W-type corresponding to Haskell’s

data BTree l n = Leaf l | Node (BTree l n) n (BTree l n)

Later, we shall exploit the W-type analysis of data in terms of shapes and
positions to characterise containers, more generally.

Views in Epigram

Once we have the idea of programming by stepwise refinement of problems, it
becomes interesting to ask ‘What refinements can we have? Are we restricted to
case and rec?’. The eliminators which we use to refine programming problems
are first-class Epigram values, so it is entirely possible to implement your own.
This flexibility is central to the design of Epigram [32], and it gives rise to a novel
and useful programming technique inspired by Wadler’s notion of ‘views’ [39].

We can specify a new way to analyse data, just by indexing a datatype family
with it. Consider pairs of Boolean values, for example: regardless of whether they

are true or false, it is surely the case that either they coincide, or the second is the
negation of the first. We can express this idea by defining a datatype family—the
view relation—with one constructor for each case of our desired analysis:

data b, a : Bool
EqOrNot b a : ⋆

where
same : EqOrNot b b diff : EqOrNot b (not b)

If we had an element p of EqOrNotb a, then case analysis for p as same or diff

tells us ipso facto whether a is b or not b. Let us make sure that we can always
have such a p by writing a covering function to show that the view relation
always holds.

let
eqOrNot b a : EqOrNot b a

eqOrNot b a ⇐ case b

eqOrNot true a ⇐ case a

eqOrNot true true ⇒ same

eqOrNot true false ⇒ diff

eqOrNot false a ⇐ case a

eqOrNot false true ⇒ diff

eqOrNot false false ⇒ same

How do we use this information in practice? Epigram has syntactic support
for case analysis derived in this style: if p is a proof that the view relation holds,
view p is the eliminator which delivers the corresponding analysis of its indices.
For example, we may now write

let
x , y : Bool

xor x y : Bool
xor x y ⇐ view (eqOrNot x y)
xor x x ⇒ false

xor x (not x) ⇒ true

There is no need to be alarmed at the appearance of repeated pattern vari-
ables and even defined functions on the left-hand side. Operationally, this pro-
gram computes an element of EqOrNotx y , then forks control accordingly as it is
same or diff. What you see on the left comes from the specialisation of y which
accompanies that constructor analysis.

Views are important tools for testing data on which types depend. Our
EqOrNot construction may be more complex than the ordinary Boolean ‘equiva-
lence’ test, but it is also more revealing. The view actually shows the typechecker
what the equality test learns.

To see this in action, consider implementing an equality test for wNat. At
each node, we shall need to compare shapes, and if they coincide, check equal-
ity at each position. How do we know that the position sets must be identical

whenever the shapes coincide? Our view makes the connection.

let
x , y : wNat

wNatEq x y : Bool

wNatEq x y ⇐ rec x

wNatEq x y ⇐ case x

wNatEq (Sup b f) y ⇐ case y

wNatEq (Sup b f) (Sup a g) ⇐ view (eqOrNot b a)
wNatEq (Sup b f) (Sup b g) ⇐ case b

wNatEq (Sup true f) (Sup true g) ⇒ wNatEq (f oh) (g oh)
wNatEq (Sup false f) (Sup false g) ⇒ true

wNatEq (Sup b f) (Sup (not b) g)) ⇒ false

3 The Universe of Finite Types

We have already implicitly introduced our first example of a universe: the uni-
verse of finite types. The names of finite types are the natural numbers which
tell us how many elements the type has and the extension of such a type name
is given by the family Fin given in the previous section, which assigns to any
n : Nat a type Fin n with exactly n elements. We will now identify basic oper-
ations on types within this universe, namely coproducts (0, +), products (1,×)
and leave exponentials (→) as an exercise. This reflects the well known fact that
the category of finite types is bicartesian closed.

Coproducts

The coproduct of two finite types m ,n : Nat is simply their arithmetical sum
plusm n : Nat, which we have defined previously. Coproducts come with in-
jections and an eliminator which gives us case analysis. We will use Epigram’s
views to implement a view on coproducts in the finite universe. As a consequence
we can use Epigram’s pattern matching to analyse elements of Fin (plusm n) as
if they were elements of an ordinary top-level coproduct (Plus).

We are going to parametrize the injections finl and finr explicitly with the
type parameters m,n : Nat leading to the following signatures:

let
m,n : Nat i : Fin m

finl m n i : Fin (plus m n)
let

m,n : Nat j : Fin n
finr m n j : Fin (plus m n)

Intuitively, finl will map the elements of Finm to the first m elements of Fin (plusm n)
and finr will map the elements of Fin n to the subsequent n elements of Fin (plusm n).
These ideas can be turned into structural recursive programs over m: in the case
of finl

finl m n i ⇐ rec m

finl m n i ⇐ case i

finl (sucm) n fz ⇒ fz

finl (sucm) n (fs i) ⇒ fs (finl m n i)

we analyse the element i : Finm mapping the constructors fs, fz in Finm to their
counterparts in Fin (plusm n). To implement finr we follow a different strategy:

finr m n j ⇐ rec m

finr m n j ⇐ case m

finr zero n j ⇒ j

finr (sucm) n j ⇒ fs (finr m n j)

We analyse the type name m : Nat to apply m successor operations fs to lift
Fin n into Fin (plusm n). It is worthwhile to note that the above implementations
of finl and finr only work for the given implementation of plus which recurs
over the first argument. Had we chosen a different one, we would have to either
have chosen a different implementation of finl and finr or would have to employ
equational reasoning to justify our implementation. We tend to avoid the latter
as much as possible by carefully choosing the way we implement our functions.

How can we compute with elements of Fin (plusm n)? One way to answer
this question is to provide an eliminator in form of a case-function:

let
s : Fin (plus m n) l : Fin m → X r : Fin n → X

fcasem n s l r : X

However, Epigram offers a general mechanism which allows the user to extend the
predefined pattern matching mechanism by providing a view, i.e. an alternative
covering of a given type which is represented as a family:

data
i : Fin (plus m n)

FinPlus m n i
where

i : Fin m
isfinl i : FinPlus m n (finl m n i)

j : Fin n
isfinr j : FinPlus m n (finr m n j)

To use the FinPlus view for pattern matching we have to implement a function
which witnesses that the covering is exhaustive:

let
finPlus m n i : FinPlus m n i

finPlus m n i ⇐ rec m

finPlus m n i ⇐ case m

finPlus zero n i ⇒ isfinr i

finPlus (sucm) n i ⇐ case i

finPlus (sucm) n fz ⇒ isfinl fz

finPlus (sucm) n (fs i) ⇐ view finPlus m n i

finPlus (sucm) n (fs (finl m n i)) ⇒ isfinl (fs i)
finPlus (sucm) n (fs (finr m n j)) ⇒ isfinr j

We can now use view to do pattern matching over Fin (plusm n), e.g. to imple-
ment fcase:

fcasem n s l r ⇐ view finPlus m n s

fcasem n (finl m n i) l r ⇒ l i

fcasem n (finr m n j) l r ⇒ r j

Products

Given type names m,n : Nat their cartesian product is denoted by the arith-
metic product timesm n. Elements of Fin (timesm n) can be constructed using
pairing:

let
i : Fin m j : Fin n

fpair m n i j : Fin (times m n)

The intuitive idea is to arrange the elements of Fin (timesm n) as a rectangle and
assign to pair i j the j th column in the ith row. This is realised by the following
primitive recursive function which uses the previously defined constructors for
coproducts, since our products are merely iterated coproducts:

fpair m n i j ⇐ rec i

fpair m n i j ⇐ case i

fpair (sucm) n fz j ⇒ finl n (times m n) j

fpair (sucm) n (fs i) j ⇒ finr n (times m n) (fpair m n i j)

Indeed the pairm n i j just computes j + i ∗ n, however our implementation
verifies that the result is less than m ∗ n simply by type checking.

As in the case for coproducts we extend pattern matching to cover our prod-
ucts by providing the appropriate view:

data
i : Fin (times m n)
FinTimes m n i : ⋆

where
i : Fin m j : Fin n

isfpair i j : FinTimes m n (fpair m n i j)

As before we show that this view is exhaustive:

let
finTimes m n i : FinTimes m n i

finTimes m n i ⇐ rec m

finTimes m n i ⇐ case m

finTimes zero n i ⇐ case i

finTimes (sucm) n i ⇐ view finPlus n (times m n) i

finTimes (sucm) n (finl n (times m n) i) ⇒ isfpair fz i

finTimes (sucm) n (finr n (times m n) j) ⇐ view finTimes m n j

finTimes (sucm) n (finr n (times m n) (fpair m n i j))
⇒ isfpair (fs i) j

Note that we are using the previously defined FinPlus view to analyse the
iterated coproducts. We can use both derived pattern matching principles to

show that products distribute over coproducts

let
x : Fin (times m (plus n o))

dist m n o x : Fin (plus (times m n) (times m o))

dist m n o x ⇐ view finTimes m (plus n o) x

dist m n o (fpair m (plus n o) i j) ⇐ view finPlus n o j

dist m n o (fpair m (plus n o) i (finl n o j))
⇒ finl (times m n) (times m o) (fpair m n i j)

dist m n o (fpair m (plus n o) i (finr n o j))
⇒ finr (times m n) (times m o) (fpair m o i j)

The categorically inclined may notice that this is not an automatic consequence
of having products and coproducts, but usually established as a consequence of
having exponentials. We leave it as an exercise to define exponentials.

Exercise 4. Define exponentials (i.e. function types) by implementing a function
to represent the name of a function type:

let
m ,n : Nat

exp m n : Nat

and a constructor corresponding to lambda abstraction:

let
f : Fin m → Fin n

flam m n f : Fin (exp m n)

Unlike in the previous cases we cannot implement a pattern matching principle
due to the lack of extensionality in Epigram’s type system.3

However, we can define an application operator:

let
f : Fin (exp m n) i : Fin m

fapp m n f i : Fin n

4 Universes for Generic Programming

The previously introduced universe of finite types is extensional, any two func-
tions which are extensionally equal are given the same code. E.g. using the
example from [13] we can see that the functions λf : Bool → Bool ⇒ f and
λf :Bool → Bool; x :Bool ⇒ f (f (f x)) are extensionally equal by encoding them

3 We cannot show that two functions are equal if they are pointwise equal. As a
consequence we cannot show for example that there are exactly 4 functions of type
Bool → Bool which would be necessary if we want to establish a case analysis
principle for finite types. Our ongoing work on Observational Type Theory [10] will
address this issue.

using the combinators defined in the previous section and observing that they
compute the same element in Fin 256.4

While extensionality is a desirable feature, it is not always as easy to achieve
as in the case of finite types. Hence, when moving to larger universes which allow
us to represent infinite datatypes we shall use a different approach. Instead of
identifying our type constructors within a given type of names, we inductively
define the type of type names and the family of inhabitants.

Finite types, revisited

To illustrate this let us revisit the universe of finite types, we can inductively
define the type names generated from 0, +, 1,×:

data
Ufin : ⋆

where
‘0’ : Ufin

a, b : Ufin
‘plus’ a b : Ufin

‘1’ : Ufin
a, b : Ufin

‘times’ a b : Ufin

We could also have included function types, however, they will require special
attention later when we introduce inductive types.

We define the family of elements Elfin inductively:

data a : Ufin
Elfin a : ⋆

where
b, a : Ufin x : Elfin a
inl x : Elfin (‘plus’ a b)

a, b : Ufin y : Elfin b
inr y : Elfin (‘plus’ a b)

void : Elfin ‘1’
x : Elfin a y : Elfin b

pair x y : Elfin (‘times’ a b)

Indeed, we have seen inductively defined families already when we introduced
Vec and Fin. We can reimplement the dist function for this universes without
having to resort to views, the built in pattern matching will do the job:

let
x : Elfin (‘times’ a (‘plus’ b c))

dist x : Elfin (‘plus’ (‘times’ a b) (‘times’ a c))

dist x ⇐ case x

dist (pair x y) ⇐ case y

dist (pair x (inl y)) ⇒ inl (pair x y)
dist (pair x (inr z)) ⇒ inr (pair x z)

4 We don’t recommend trying this with the current implementation of Epigram.

4.1 Enumerating finite types

So far we haven’t defined any proper generic operations, i.e. an operation which
works on all types of a universe by inspecting the name. A generic operation
which is typical for finite types is the possibility to enumerate all elements of a
given type. We shall use binary trees instead of lists to represent the results of
an enumeration so that the path in the tree correspond to the choices we have to
make to identify the element. Since our types may be empty we require a special
constructor to represent an empty tree:

data A : ⋆
ET A : ⋆

where a : A
V a : ET A

l , r : ET A
C l r : ET A E : ET A

Our generic enumeration function has the following type:

let a : Ufin
enum a : ET (Elfin a)

To implement enum it is helpful to observe that ET is a monad, with

let a : A
returnET a : ET A

returnET a ⇒ V a

let
t : ET A f : A → ET B

bindET t f : ET B

bindET t f ⇐ rec t

bindET t f ⇐ case t

bindET (V a) f ⇒ f a

bindET (C l r) f ⇒ C (bindET l f) (bindET r f)
bindET E f ⇒ E

Consequently, ET is also functorial:

let
f : A → B t : ET A
mapET f t : ET B

mapET f t ⇒ bindET t (λx ⇒returnET (f x))

We are now ready to implement enum by structural recursion over the type
name:

enum a ⇐ rec a

enum a ⇐ case a

enum ‘0’ ⇒ E

enum (‘plus’ a b) ⇒ C (mapET inl (enum a)) (mapET inr (enum b))
enum ‘1’ ⇒ V void

enum (‘times’ a b)
⇒ bindET (enum a) (λx ⇒mapET (λy ⇒pair x y) (enum b))

Exercise 5. Add function types to Ufin and extend Elfin. Can you extend enum
to cover function types?

Context-free types

By context-free types5 we mean types which can be constructed by combining
the polynomial operators from the previous section (0, +,×, 1) with an operator
µ to construct inductive types, or in categorical terms initial algebras. We have
already seen some examples of context-free types, for instance Nat can be ex-
pressed as Nat = µX.1+X and List which can be encoded: ListA = µX.1+A×X .
Other examples we will use include binary trees with data at the nodes which
can be given by the expression Tree A = µX.1+ (X ×A×X). Finally rose trees
which are given by the code RTA = µX.List (A×X) = µX.µY.1+ (A×X)×Y .
We use the term context-free types because the types have the same structure as
context-free grammars, identifying parameters with terminal symbols, recursive
variables with non-terminal symbols, choice with + and sequence with ×.

The first technical issue we need to address is how to represent variables. We
use a deBruijn style representation of variables, this seems to be essential since
we give are going to represent types an inductive family, using names would
cause a considerable overhead and also would mean that we have to deal with
issues like alpha conversion. Moreover, we are free to implement a function which
translates a name carrying type into our internal deBruijn representation. This
choice is a variation on the approach taken by McBride[29] when he first gave
an inductive characterisation of these types. The names of context free types
becomes a family indexed by the number of free variables:

data n : Nat
Ucf n : ⋆

where

as constructors we retain the polynomial operators which leave the number of
free variables unchanged:

‘0’ : Ucf n
a, b : Ucf n

‘plus’ a b : Ucf n

‘1’ : Ucf n
a, b : Ucf n

‘times’ a b : Ucf n

To represent variables we introduce two constructors: vl which represents the
last variable in a non-empty context, and wk a which means that the type name
a is weakened, i.e. the last variable is not used and vl now refers to the variable
before the last:

vl : Ucf (suc n)
a : Ucf n

wk a : Ucf (suc n)

5 We previously used the term ‘regular tree types’ [35] in a vain attempt to avoid
confusion with regular expressions.

An alternative is to use the previously defined family of finite types directly, i.e.
only to introduce one constructor:

x : Fin n
var x : Ucf n

but it is slightly more convenient to use wk and vl because otherwise we have to
define operations on Fin and Ucf instead of just for Ucf.

Dual to weakening is an operator representing local definitions, which allows
us to replace the last variable by a given type name:

f : Ucf (sucn) a : Ucf n
def f a : Ucf n

Alternatively, we could have defined substitution by recursion over the structure
of type names. In the presence of a binding operator, here µ, this is not com-
pletely trivial. Later, we will see that another advantage of local definitions is
that it allows us to define operations by structural recursion whose termination
would have to be justified otherwise.

Finally, we introduce the constructor for inductive types, which binds the
last variable and hence decreases the number of free variables by one:

f : Ucf (suc n)
‘mu’ f : Ucf n

Our examples (natural numbers, lists, trees and rose trees) can be translated
into type names in Ucf:

let
nat : Ucf n

nat ⇒ ‘mu’ (‘plus’ ‘1’ vl)

let
list : Ucf (suc n)

list ⇒ ‘mu’ (‘plus’ ‘1’ (‘times’ (wk vl) vl))

let
tree : Ucf (suc n)

tree ⇒ ‘mu’ (‘plus’ ‘1’ (‘times’ vl (‘times’ (wk vl) vl)))

let
rt : Ucf (suc n)

rt ⇒ ‘mu’ (def list (‘times’ (wk vl) vl))

While nat and rt are closed types and hence inhabit Ucf n for any n : Nat,
list is parametrized by the last type variable and hence inhabits Ucf (sucn). We
exploit this in the definition of rose trees where we construct rose trees as the
initial algebra of list. Alternatively we can instantiate list to any type name
using let, e.g. let listnat : Ucf n represents the type of lists of natural numbers.

4.2 Elements of context-free types

How are we going to define the family of elements for Ucf? We have to take
care of the free type variables. A first attempt would be to say that we have to
interpret any type variable by a type, leading to the following signature6 :

a : Ucf n Xs : Vec n ⋆
Elcf a Xs : ⋆

This approach works fine for the polynomial operators, which are interpreted as
before, and the variables which correspond to projections; however, we run in
difficulties for µ. Let’s see why: A reasonable attempt is to say:

x : Elcf f (vcons (Elcf (‘mu’ f) Xs) Xs)
in x : Elcf (‘mu’ f) Xs

However, this definition is not accepted by Epigram’s schema checker, since it
is not able to verify that the nested occurrence of Elcf is only used in a strictly
positive fashion. This check is necessary to keep Epigram’s type system sound
by avoiding potentially non-terminating programs.

However, if we restrict ourselves to interpreting only closed types, we can
overcome this problem. We define the Elcf wrt to a closing substitution or tele-
scope, which interprets any free type variable by a type name with fewer free
variables. Hence we define the family of telescopes:

data n : Nat
Tel n : ⋆

where
tnil : Tel zero

a : Ucf n as : Tel n
tcons a as : Tel (suc n)

We can now define an interpretation for an open type together with a fitting
telescope:

data a : Ucf n as : Tel n
Elcf a as : ⋆

the constructors for the polynomial operators stay the same, only indexed with
a telescope which is passed through:

b, a : Ucf x : Elcf a as
inl x : Elcf (‘plus’ a b) as

a, b : Ucf y : Elcf b as
inr y : Elcf (‘plus’ a b) as

void : Elcf ‘1’ as
x : Elcf a y : Elcf b as

pair x y : Elcf (‘times’ a b) as

The interpretation of the last variable is simply the interpretation of the first
type name in the telescope:

x : Elcf a as
top x : Elcf vl (tcons a as)

6 We are exploiting here ⋆ : ⋆, however, this use can be stratified, i.e. if Xs : ⋆i then
Elcf a Xs : ⋆i+1.

Meanwhile, the interpretation of a weakened type is given by popping off the
first item of the telescope:

x : Elcf a as
pop x : Elcf (wk a) (tcons b as)

A local definition is explained by pushing the right hand side of the definition
onto the telescope stack:

x : Elcf f (tcons a as)
push x : Elcf (def f a) as

We can finally reap the fruits of our syntactic approach by providing an
interpretation of mu which doesn’t require a nested use of Elcf:

x : Elcf f (tcons as (‘mu’ f))
in x : Elcf (‘mu’ f) as

We can now derive constructors for our encoded types and provide a derived
case analysis using views. We show this in the case of nat and leave the other
examples as an exercise.

We derive the constructors representing 0 and successor:

let
‘zero’ : Elcf nat as

‘zero’ ⇒ in (inl void)

let n : Elcf nat as
‘suc’ n : Elcf nat as

‘suc’ n ⇒ in (inr (top n))

Our view is that all elements of Elcf nat are constructed by one of the construc-
tors, this is expressed by the family NatView:

data n : Elcf nat as
NatView n : ⋆

where
isZ : NatView ‘zero’

n : Elcf nat as
isS n : NatView (‘suc’ n)

We show that NatView is exhaustive:

let n : Elcf nat as
natView n : NatView n

natView n ⇐ case n

natView (in x) ⇐ case x

natView (in (inl x)) ⇐ case x

natView (in (inl void)) ⇒ isZ

natView (in (inr y)) ⇐ case y

natView (in (inr (top n ′))) ⇒ isS n ′

We can now use the derived pattern matching principle to implement functions
over the encoded natural numbers:

let m,n : Elcf nat as
‘add’ m n : Elcf nat as

‘add’ m n ⇐ rec m

‘add’ m n ⇐ view natView m

‘add’ (in (inl void)) n ⇒ n

‘add’ (in (inr (top m ′))) n ⇒ in (inr (top (‘add’ m ′ n)))

Unfortunately, epigram always normalizes terms which appear in patterns, ex-
panding ‘zero’ and ‘suc’, which makes the pattern not very readable.

Note that we don’t need to derive a new recursion principle since structural
recursion over the encoded natural numbers is the same as structural recursion
over the natural numbers.

A natural question is whether we should have to distinguish between encoded

natural numbers and natural numbers at all. The answer is clearly no, since they
are isomorphic anyway. To exploit this fact and avoid unnecessary duplication
of definitions we need to build in a reflection mechanism into Epigram which
allows us to access the names of the top level universe as data.

Exercise 6. Define a pattern matching principle for lists, that is first define ‘con-
structors’

let
‘nil’ : Elcf list X

let
x : Elcf a as xs : Elcf list (tcons a as)

‘cons’ x xs : Elcf list (tcons a as)

and then create an appropriate view, following the nat example. Consider how
to do this for rose trees.

The typical generic operation on context-free types is generic equality. We
can implement generic equality by structural recursion over the elements in Elcf:

let
x , y : Elcf a as
geq x y : Bool

geq x y ⇐ rec x

geq x y ⇐ case x

geq (inl xa) y ⇐ case y

geq (inl xa) (inl ya) ⇒ geq xa ya

geq (inl xa) (inr yb) ⇒ false

geq (inr xb) y ⇐ case y

geq (inr xb) (inl ya) ⇒ false

geq (inr a) (inr yb) ⇒ geq xb yb

geq void y ⇐ case y

geq void void ⇒ true

geq (pair xa xb) y ⇐ case y

geq (pair xa xb) (pair ya yb) ⇒ and (geq xa ya) (geq xb yb)
geq (top x) y ⇐ case y

geq (top x) (top y) ⇒ geq x y

geq (pop x) y ⇐ case y

geq (pop x) (pop y) ⇒ geq x y

geq (push x) y ⇐ case y

geq (push x) (push y) ⇒ geq x y

geq (in x) y ⇐ case y

geq (in x) (in y) ⇒ geq x y

The algorithm is completely data-driven — indeed we never inspect the type.
However, using the type information, the choice of the first argument limits the
possible cases for the 2nd. This is what dependently typed pattern matching
buys us, that it records the consequences of choices we have already made.

Note that we don’t have to assume that the equality of type parameters is
decidable. This is due to the fact that we only derive generic operations for
closed types here.

Exercise 7. Instead of just returning a boolean we can actually show that we
can decide equality of elements of Elcf. We say that a type is decided, if it can
be established whether it is empty or inhabited. This is reflected by the following
definition:

let A : ⋆
Not A : ⋆

Not A ⇒ A → Zero

data A : ⋆
Dec A : ⋆

where a : A
yes a : Dec A

f : Not A
no f : Dec A

Here Zero is Epigram’s built in empty type, establishing a function of type NotA,
i.e. A → Zero establishes that A is uninhabited.

To show that equality for context-free types is decidable we have to imple-
ment:

let
x , y : Elcf a as

geqdec x y : Dec (x = y)

geqdec is a non-trivial refinement of geq using Epigram’s type system to
show that the implementation of the program delivers what its name promises.

4.3 Strictly positive types

Context-free types capture most of the types which are useful in daily functional
programming. However, in some situations we want to use trees which are in-
finitely branching. E.g. we may want to define a system of ordinal notations,
which extends natural numbers by the possibility to form the limit, i.e. the least
upper bound, of an infinite sequence of ordinals.

data
Ord : ⋆

where
oz : Ord

a : Ord
os a : Ord

f : Nat → Ord
olim f : Ord

We can embed the natural numbers into the ordinals:

let n : Nat
o2n n : ⋆

n2o n ⇐ rec n

n2o n ⇐ case n

n2o zero ⇒ oz

n2o (suc n) ⇒ os (n2o n)

and using this embedding we define the first infinite ordinal (ω) as the limit of
the sequence of all natural numbers:

let
omega : Ord

omega ⇒ olim n2o

We can also do arithmetic on ordinals, using structural recursion we define ad-
dition7 of ordinals:

let
a, b : Ord

oplus a b : Ord

oplus a b ⇐ rec b

oplus a b ⇐ case b

oplus a oz ⇒ a

oplus a (os b) ⇒ os (oplus a b)
oplus a (olim f) ⇒ olim (λn ⇒ oplus a (f n))

Categorically, Ord is an initial algebra µX.1+X +Nat → X , it is an instance
of a strictly positive type. Strictly positive types may use function types, like

7 To reflect the standard definition of ordinal addition we have to recur on the 2nd
argument. Ordinal addition is not commutative, ω + 1 denotes the successor of ω,
while 1 + ω is order-isomorphic to ω.

in Nat → X but we do not allow type variables to appear on the left-hand
side of the arrow. I.e. µX.X → Bool is not strictly positive because X appears
negatively, but neither is µX.(X → Bool) → Bool because X appears positively
but not strictly positive.

We introduce the universe of strictly positive types by amending the universe
of context-free types. That is we define

data n : Nat
Usp n : ⋆

data
a : Usp n as : Tel n

Elsp a as : ⋆

with all the same constructors as Ucf and Elcf and additionally a constructor
for constant exponentiation:

A : ⋆ b : Usp n
‘arr’ A b : Usp n

and a corresponding constructor for Elsp:

f : A → Elsp b as
fun f : Elsp (‘arr’ A b) as

It is now easy to represent ordinals in this universe:

let
ord : Usp n

ord ⇒ ‘mu’ (‘plus’ ‘1’ (‘plus’ vl (‘arr’ Nat vl)))

We have been cheating a bit, because the constructor ‘arr’ refers to a type.
Thus Usp n : ⋆i+1 if A : ⋆i in ‘arr’ A b. An alternative would be to insist that
the codomain of ‘arr’ is a closed strictly positive type, but this causes problems
when introducing fun because of a negative occurrence of Elsp.

Exercise 8. Derive the constructors for ord : Usp n and a view which allows
pattern matching over ord. Use this to define ordinal addition for the encoded
ordinals.

4.4 Generic map

We don’t know many useful generic operations which apply to closed strictly
positive types, but there is an important one for open ones: generic map. While
we have given only an interpretation for closed types we are able to express
generic map by introducing maps between telescopes.

We introduce a family representing maps between telescopes, which corre-
spond to a sequence of maps between the components of the telescopes:

data
as , bs : Tel n
Map as bs : ⋆

and generic map simply lifts maps on telescope to a function between the element
of a type instantiated with the telescopes:

let
fs : Map as bs x : Elsp a as

gmap fs x : Elsp a bs

What are the constructors for Map? There are two obvious ones, which corre-
spond to the idea that Map as bs is simply a sequences of maps between the
components of as and bs :

mnil : Map tnil tnil
f : Elsp a as → Elsp b bs fs : Map as bs
mcons f fs : Map (tcons a as) (tcons b bs)

However, it is useful to introduce a 3rd constructor, which extends a given se-
quence of maps by the identity function:

fs : Map as bs
mext fs : Map (tcons a as) (tcons a bs)

Note that mext fs isn’t just mcons (λ x ⇒ x) fs because instead of the identity
we need a function of the type Elsp a as → Elsp a bs . It would be possible to
define mext mutually with gmap but it is much easier to introduce an additional
constructor which also keeps the program structural recursive.

The definition of gmap is now rather straightforward by structural recursion
on the argument:

gmap fs x ⇐ rec x

gmap fs x ⇐ case x

gmap fs (inl x) ⇒ inl (gmap fs x)
gmap fs (inr y) ⇒ inr (gmap fs y)
gmap fs void ⇒ void

gmap fs (pair x y) ⇒ pair (gmap fs x) (gmap fs y)
gmap fs (fun f) ⇒ fun (λx ⇒ gmap fs (f x))
gmap fs (top x) ⇐ case fs

gmap (mcons f fs) (top x) ⇒ top (f x)
gmap (mext fs) (top x) ⇒ top (gmap fs x)

gmap fs (pop x) ⇐ case fs

gmap (mcons f fs) (pop x) ⇒ pop (gmap fs x)
gmap (mext fs) (pop x) ⇒ pop (gmap fs x)

gmap fs (push x) ⇒ push (gmap (mext fs) x)
gmap fs (in x) ⇒ in (gmap (mext fs) x)

The cases for the proper data constructors (inl, inr, void, pair, fun and in) are stan-
dard and just push gmap under the constructor. The other cases deal with the
environment: top and pop have to analyse whether he environment has been
constructed using mcons or mext while in the line for push we can reap the fruits
by using mext instead having to use a non-structural recursive call to gmap.

As before in the case of geq the program is data-driven, i.e. we never have to
inspect the type. However, the type-discipline helps us to find the right definition,
which in many cases is the only possible one.

Exercise 9. Instantiate, gmap for list:

let
list : Usp (suc n)

list ⇒ ‘mu’ (‘plus’ ‘1’ (‘times’ (wk vl) vl))

to obtain

let
f : Elsp a as → Elsp b as xs : Elsp list (tcons a as)

map f xs : Elsp list (tcons b as)

4.5 Relating universes

In the previous section we have incrementally defined three universes, each one
extending the previous one together with a typical generic operation:

universe of inhabited by generic operation
Ufin finite types Booleans (bool) Enumeration (enum)
Ucf context-free types Rose trees (rt) Equality (geq)
Usp strictly positive types Ordinals (ord) Map (gmap)

We could have factored out the common parts of the definitions and estab-
lished that every universe can be embedded into the next one but for pedagogical
reasons we chose the incremental style of presentation. We note that the generic
operations are typical for a given universe because they do not extend to the
next level, i.e. enumeration doesn’t work for context-free types because they con-
tain types with an infinite number of elements; equality doesn’t work for strictly
positive types because equality here is in general undecidable (e.g. for ordinals).

Are there any important universes we have left out? Between Ufin and Ucf

we can find the universe of regular types, i.e. types which are represented as
regular expressions, where the datatype of lists plays the role of Kleene’s star.
Another possibility is to also allow coinductive context-free types like streams
by including codes for terminal coalgebras, e.g. StreamX = νX.A×X . However,
this doesn’t fit very well with our way to define El inductively.

What about the universe of positive types extending the strictly positive
types? It is unclear how to understand a type like µX.(X → Bool) → Bool
8 intuitively and there seem to be only very limited applications of positive
inductive types. However, for gmap it is sensible to allow parameters in non-
strict positive positions without closing under µ.

8 Note that (X → Bool) → Bool is covariant, unlike X → Bool × Bool which is
contravariant.

4.6 Universes and Representation Types

There is a very strong connection between the notion of universe in Type The-
ory and the more recent notion of representation type which has emerged from
work on type analysis [17] to become a popular basis for generic programming
in Haskell [23, 22, 40]. The two notions are both standard ways to give a data
representation to a collection of things, in this case, types:

– Martin-Löf’s universes (U ,El) collect types as the image of a function El :
U → ⋆. Elements of U may thus be treated as proxies for the types to which
they map.

– Representation types characterise a collection of types as a predicate, Rep :
⋆ → ⋆. An element of Rep T is a proof that T is in the collection, and it is
also a piece of data from which one may compute.

The former approach is not possible in Haskell, because U → ⋆ is not express-
ible when U is a type rather than a ‘kind’. However, the latter has become possi-
ble, thanks to the recent extension of (ghc) Haskell with a type-indexed variant
of inductive families [20], the so-called ‘Generalized Algebraic Data Types’ [38].
For example, one might define a universe of regular expression types as follows

data Rep a where

Char :: Rep Char

Unit :: Rep ()

Pair :: Rep a -> Rep b -> Rep (a,b)

Either :: Rep a -> Reb b -> Rep (Either a b)

List :: Rep a -> Rep [a]

and then write a function generic with respect to this universe by pattern-
matching on Rep, always making sure to keep the the type representative to the
left of the data which indirectly depends on it:

string :: Rep a -> a -> String

string Char c = [c]

string Unit () = ""

string (Pair a b) (x, y) = string a x ++ string b y

string (Either a b) (Left x) = string x

string (Either a b) (Right y) = string y

string (List a) xs = xs >>= string a

Of course, in Epigram, these two kinds of collection are readily interchange-
able. Given U and El , we may readily construct the predicate for ‘being in the
image of El ’:

Rep X ⇒ Sigma U (λu ⇒El u = X)

In the other direction, given some Rep, we may ‘name’ a type as the depen-
dent pair of the type itself and its representation: we interpret such a pair by

projecting out the type!

U ⇒ Sigma ⋆ (λX ⇒Rep X)
El ⇒ fst

One can simulate this to some extent in Haskell by means of existential types

data U = forall a. U (Rep a)

and thus provide a means to compute one type from another—some sort of
auxiliary data structure, perhaps—by writing a function aux :: U -> U. For
example, aux might compute the notion of ‘one-hole context’ appropriate to its
argument, in an attempt to support generic structure editing. Unfortunately, U
is not a Sigma type but a System F ‘weak’ existential: direct access to the type
it packages is not possible. There is no way to express operations whose types
explicitly invoke these functions, e.g., plugging a value into a one-hole context
to recover an element of the original type.

System F’s capacity for secrecy is rather useful in other circumstances, but
it is a problem here. The nearest we can get to El is a rank-2 accessor which
grants temporary access to the witness to facilitate a computation whose type
does not depend on it.

for :: U -> (forall a. Rep a -> b) -> b

This problem is not the fault of representation types as opposed to universes
(although the latter are a little neater for such tasks): it’s just a shortfall in the
expressivity of Haskell.

5 Containers

In section 3 we started with a semantic definition of the universe of finite types,
while in the previous section we introduced universes syntactically, i.e. using
inductive definitions. In the present section we will exploit our work on container
types to give a semantic interpretation of the universe of context-free types
which also works for strictly positive types. It is good to have both views of the
universes available, we have seen that the inductive approach is very practical
to define generic and non-generic operations on data. However, the semantic
approach we introduce here often provides an alternative approach to defining
generic functions semantically. We will demonstrate this in more detail in the
next section using the example of derivatives of datatypes. Another advantage
of the semantic view is that it allows us to interpret open datatypes directly as
operations on types, e.g. we can apply list to types which don’t have a name in
our universe.

5.1 Unary containers

Before embarking on the more general concept of n-ary containers, which as
we will see can model exactly the universe of strictly positive types, we have a
look at unary containers, which model type constructors with one parameter, i.e.
inhabitants of ⋆ → ⋆, where the parameter represents a type of payload elements
to be stored within some structure. A unary container is given by a type of
shapes S : ⋆ and a family of positions P : S → ⋆. I.e. we define:

data
UCont : ⋆

where S : ⋆ P : S → ⋆
ucont S P : UCont

s : S

ucont S P

→

P s

We illustrate containers with triangle diagrams, intended to resemble a node in
a tree with its root at the left. As with W-types, we indicate a choice of shape in
the apex, and the base then represents a set of points, dependent on the shape;
the arrow at the top of the base indicates that the points in this set are positions
for payload.

The extension of a container is the parametric datatype which it describes:
its values consist of a choice of shape and an assignment of payload to positions,
represented functionally.

data C : UCont X : ⋆
UExt C X : ⋆

where
s : S f : P s → X

uext s f : UExt (ucont S P) X

s

uext

f p 7→ x•

We can also illustrate inhabitants of such a type by a diagram, labelling the base
with the function f which takes each position p to some payload value x .

An example of a unary container is this representation of List:

let
cList : UCont

cList ⇒ ucont Nat Fin n : Nat

cList fsn−1 fz•
·
·
·
fz•
→

The shape of a list is its length, i.e. a natural number, and a list with shape
n : Nat has Fin n positions. We can re-implement the constructors for lists to
target the container representation

let i : Fin zero
noFin i : X

noFin i ⇐ case i

let
cnil : UExt cList X

cnil ⇒ uext zero noFin
zero

uext

let
x : X f : Fin n → X i : Fin (suc n)

caseFin x f i : X

caseFin x f i ⇐ case i

caseFin x f fz ⇒ x

caseFin x f (fs i) ⇒ f i

let x : X xs : UExt cList X
ccons x xs : UExt cList X

ccons x xs ⇐ case xs

ccons x (uext n f) ⇒ uext (suc n) (caseFin x f)

suc n

uext

fs i 7→ f i•

fz 7→ x•

Exercise 10. We can also give a container representation for binary trees, here
shapes are given by trees containing data, positions by paths through such a
tree:

data
cTreeS : ⋆

where
sleaf : cTreeS

l , r : cTreeS
snode l r : cTreeS

data s : cTreeS
cTreeP s : Type

where
phere : cTreeP (node l r)

q : cTreeP l
pleft q : cTreeP (node l r)

p : cTreeP r
pright p : cTreeP (node l r)

let
cTree : UCont

cTree ⇒ uext cTreeS cTreeP

Implement leaf and node for cTree:

let
cleaf : UExt cTree X

let r : UExt cTree X x : X r : UExt cTree X
cnode l x r : UExt cTree X

Each container gives rise to a functor. We can implement map for unary
containers by applying the function to be mapped directly to the payload:

let
C : UCont f : X → Y c : UExt C X

ucmap C f c : UExt C Y

ucmap C f c ⇐ case c

ucmap (ucont S P) f (uext s g) ⇒ uext s (λx ⇒ f (g x))

A morphism between functors is a natural transformation, e.g. reverse is a
natural transformation from list to list. We can explicitly represent morphisms
between containers: given unary containers ucontS P and ucontT Q , a morphism
is a function on shapes f : S → T and a family of functions on positions, which
assigns to every position in the target a position in the source, i.e.

u : ∀s :S ⇒Q (f s) → P s

The contravariance of the function on positions may be surprising, however, it
can be intuitively understood by the fact that we can always say where a piece of
payload comes from but not where it goes to, since it may be copied or disappear.
Hence we define:

data
C ,D : UCont
UMor C D : ⋆

where
f : S → T u : ∀s :S ⇒Q (f s) → P s

umor f u : UMor (ucont S P) (ucont T Q)

To every formal morphism between containers we assign a family of maps,
parametric in the payload type:

let m : UMor C D c : UExt C X
UMapp m c : UExt D X

UMapp m c ⇐ case m

UMapp (umor f u) c ⇐ case c

UMapp (umor f u) (uext s g) ⇒
uext (f s) (λq ⇒g (u s q))

s

uext

g p 7→ x•

umor f u u s

f s

uext

q•

As an example we can define cHead for the container representation of lists,
since we require totality we will define a morphism between cList and cMaybe,
which relates to Haskell’s Maybe type:

let
cMaybe : UCont

cMaybe ⇒ ucont Bool So

There are two possible layouts for cMaybe containers:

false

cMaybe

→

true

cMaybe

→

oh•

There are then two cases to consider when defining our morphism. For the
zero shape of cList, we choose the false shape of cMaybe, leaving no positions
to fill. For any other input shape, we choose true, leaving one position to fill: we
fetch its payload from input position fz—the head.

let n : Nat
isSuc : Bool

isSuc n ⇐ case n

isSuc zero ⇒ false

isSuc (sucn) ⇒ true

let
n : Nat q : So (isSuc n)

least n q : Fin n
least n q ⇐ case n

least zero q ⇐ case q

least (suc n) q ⇒ fz

let
cHead : UMor cList cMaybe

cHead ⇒ umor isSuc least

We illustrate these two cases as follows:

zero

uext

false

uext

suc n

uext fz 7→ x•

least (suc n)

true

uext

oh•

It is not hard to show that these families of maps are always natural transfor-
mations in the categorical sense, with respect to UExt’s interpretation of unary
containers as functors. Indeed, it turns out that all natural transformations be-
tween functors arising from containers can be given as container morphisms, see
theorem 3.4. in [2].

Exercise 11. Give the representation of reverse as morphism between unary con-
tainers, i.e.

let
cRev : UMor cList cList

Exercise 12. While the interpretation of morphisms is full, i.e. every natural
transformation comes from a container morphism, the same is not true for con-
tainers as representations of functors. Can you find a functor which is not rep-
resentable as a unary container?

5.2 n-ary containers

We are now going to interpret strictly positive types Usp as containers by im-
plementing operations on containers which correspond to constructors of Usp.
We reap the fruits by defining a simple evaluation function which evalC which
interprets Usps as containers. First of all we have to generalize our previous
definition to n-ary containers to reflect the presence of variables in Usp:

data n : Nat
Cont n : ⋆

where S : ⋆ P : Fin n → S → ⋆
cont S P : Cont n

s : S

cont S P

→fsn−1 fz

P (fsn−1 fz) s

·
·
·

→fz

P fz s

It is important to understand that we use only one shape but n sets of positions.
E.g. consider the two-parameter container of leaf and node labelled trees, the
shape of a tree is given by ignoring the data, but the positions for leaf-data and
tree-data are different. Accordingly, in our diagrams, we may segment the base

of the triangle to separate the surfaces where each sort of payload attaches and
we index the arrows accordingly.

The extension of an n-ary container is given by an operator on a sequence of
types, generalizing the sketch above to the n-ary case:

data C : Cont n Xs : Fin n → ⋆
Ext C Xs : ⋆

where

P : Fin n → S → ⋆ Xs : Fin n → ⋆

s : S f : ∀i :Fin n ⇒P i s → Xs i

ext s f : Ext (cont S P) Xs

s

ext

f (fsn−1 fz) 7→ x ′ : Xs (fsn−1 fz)•
·
·
·

f fz 7→ x : Xs fz•

Exercise 13. Show that n-ary containers give rise to n-ary functors, i.e. imple-
ment:

let

C : Cont n Xs,Ys : Fin n → ⋆

fs : ∀i :Fin n ⇒Xs i → Ys i x : Ext C Xs

map C fs x : Ext C Ys

5.3 Coproducts and products

A constant operator is represented by a container which has no positions, e.g.
the following containers represent the empty and the unit type:

let
cZero : Cont n

cZero ⇒ cont Zero (λi ; s ⇒ Zero)

let
cOne : Cont n

cOne ⇒ cont One (λi ; s ⇒ Zero) ()
cOne

→i

Given two containers C = contS P ,D = contT Q we construct their coprod-
uct or sum, representing a choice between C and D . On the shapes this is just
the type-theoretic coproduct Plus S T as defined earlier. What is a position in
Plus S T? If our shape is of the form Inl s then it is given by P s , on the other
hand if it is of the form Inr t then it is given by Q t . Abstracting shapes and
positions, we arrive at:

data
P : A → ⋆ Q : B → ⋆ ab : Plus A B

PPlus P Q ab : ⋆

where p : P a
pinl p : PPlus P Q (Inl a)

q : Q b
pinr q : PPlus P Q (Inr b)

Putting everything together we define the containers as follows, with the two
typical layouts shown in the diagrams:

let
C ,D : Cont n

cPlus C D : Cont n

cPlus C D ⇐ case C

cPlus (cont S P) D ⇐ case D

cPlus (cont S P) (cont T Q)
⇒ cont (Plus S T)

(λi ⇒PPlus (P i) (Q i))

Inl s

cPlus C D

→i

pinl (p : P i s)•

Inr t

cPlus C D

→i

pinr (q : Q i t)•

Let’s turn our attention to products: on shapes again this is just the type-
theoretic product, Times—each component has a shape. Given two containers
C = cont S P ,D = cont T Q , as above, what are the positions in a product
shape Pair s t : Times S T? There are two possibilities: either the position is in
the left component, then it is given by P s or it is in the right component then
it is given by Q t . Abstracting shapes and positions again we define abstractly:

data
P : A → ⋆ Q : B → ⋆ ab : Times A B

PTimes P Q ab : ⋆
where

p : P a
pleft p : PTimes P Q (Pair a b)

q : Q b
pright q : PTimes P Q (Pair a b)

and we define the product of containers as:

let
C ,D : Cont n

cTimes C D : Cont n

cTimes C D ⇐ case C

cTimes (cont S P) D ⇐ case D

cTimes (cont S P) (cont T Q)
⇒ cont (Times S T)

(λi ⇒PTimes (P i) (Q i))

Pair

cTimes C D

s

→i

pleft (p : P i s)•

t

→i

pright (q : Q i t)•

Exercise 14. Define an operation on containers which interprets constant expo-
nentation as described in section 4.3, i.e. define

let A : ⋆ C : Cont n
cArr A C : Cont n

5.4 Structural operations

If we want to interpret the universe of context-free or strictly positive types
faithfully, we also have to find counterparts for the structural operation vl (last
variable), wk (weakening) and def (local definition).

The interpretation of vl is straightforward: There is only one shape and in
the family of positions P : Fin (suc n) there is only one position at index fz:

let
cvl : Cont (suc n)

cvl ⇒ cont One (λi ; s ⇒ i = fz)
()

cvl

→fs i

→fz

refl fz•

Weakening isn’t much harder: the shape stays the same but the position indices
get shifted by one assigning no positions to index fz. We define first an auxiliary
operator on positions:

let
P : Fin n → S → ⋆ i : Fin (suc n) s : S

Pwk P i s : ⋆

Pwk P i s ⇐ case i

Pwk P fz s ⇒ Zero

Pwk P (fs i) s ⇒ P i s

and use this to define:

let C : Cont n
cwk C : Cont (suc n)

cwk C ⇐ case C

cwk (cont S P) ⇒ cont S (Pwk P)

s : S

cwk C

→fs i

P i s

→fz

The case of local definition is more interesting. We assume as given two
containers: C = cont S P : Cont (suc n),D = cont T Q : Cont n. We create
a new n-ary container by binding variable fz of C to D , hence attaching D-
structures to each fz-indexed position of a C -structure. The i-positions of the
result correspond either to i-positions of some inner D , or the free (fsi)-positions
of the outer C .

s : S

C

→i

P (fs i) s

p : P fz s 7→ f p

D

→i

Q i (f p)•

To record the shape of the whole thing, we need to store the outer C shape, some
s : S , and the inner D shapes: there is one for each outer fz-position, hence we
need a function f : P fz s → T . As before we abstract from the specific position
types and define abstractly:

data S : ⋆ P0 : S → ⋆ T : ⋆
Sdef S P0 T : ⋆

where
s : S f : P0 s → T
sdef s f : Sdef S P0 T

What is a position in the new container, for a given index i? It must either be
a ‘free’ outer position, given by P (fs i), or the pair of a ‘bound’ outer position

with an inner position given by Q i . Hence, we define a general operator for
positions in Sdef, which we can instantiate suitably for each index:

data
P0 ,P ′ : S → ⋆ Q : T → ⋆ x : Sdef S P0 T

Pdef P0 P ′ Q x : ⋆

where
p : P ′ s

ppos p : Pdef P0 P ′ Q (sdef s f)
p : P0 s q : Q (f p)

qpos p q : Pdef P0 P ′ Q (sdef s f)

Putting the components together, we can present the definition operator:

let
C : Cont (suc n) D : Cont n

cdef C D : Cont n

cdef C D ⇐ case C

cdef (cont S P) D ⇐ case D

cdef (cont S P) (cont T Q)
⇒ cont (Sdef S (P fz) T) (λi ⇒Pdef (P fz) (P (fs i)) (Q i))

5.5 Inductive types (µ)

To interpret the mu constructor we take an n + 1-ary container C = cont S P :
Cont (suc n) and try to find a container which represents the initial algebra with
respect to the ‘bound’ index fz. For each shape s : S , P fz s gives the positions
of recursive subobjects. Meanwhile the positions for i -indexed payload at each
node are given by P (fs i).

s : S

C

→i

P (fs i) s

f p : P fz s 7→ f p

C

→i

P (fs i) (f p)

7→ · · ·•
•

Clearly, to be able to construct a tree at all, there must be at least one ‘base case’
s for which P fz s is empty. Otherwise there are no leaves and the corresponding
tree type is empty.

How can we describe the shapes of these trees? At each node, we must supply
the top-level shape, together with a function which gives the shape f the subtrees.
This is given exactly by W S (P fz). Given a shape in form of a W-tree, the
positions at index i correspond to path leading to a P (fs i) somewhere in the
tree. We can define the types of paths in a tree in general:

data
S : ⋆ P0 ,P ′ : S → ⋆ x : W S P0

PW S P0 P ′ x : ⋆

where x : P ′ s
here x : PW S P0 P ′ (Sup s f)

p : P0 s r : PW S P0 P ′ (f p)
under p r : PW S P0 P ′ (Sup s f)

The idea is that a path either exits at the top level node here at a position in
P ′ s or continues into the subtree under a positions in P0 s . Putting shapes and
paths together we arrive at the following definition:

let
C : Cont (suc n)
cMu C : Cont n

cMu C ⇐ case C

cMu (cont S P) ⇒ cont (W S (P fz)) (λi ⇒PW S (P fz) (P (fs i)))

5.6 Interpreting universes

Since we have constructed semantic counterparts to every syntactic constructor
in Ucf we can interpret any type name by a container with the corresponding
arity:

let a : Ucf n
evalC a : Cont n

evalC a ⇐ rec a

evalC a ⇐ case a

evalC vl ⇒ cvl
evalC (wk a) ⇒ cwk (evalC a)
evalC ‘0’ ⇒ cZero
evalC (‘plus’ a b) ⇒ cPlus (evalC a) (evalC b)
evalC ‘1’ ⇒ cOne
evalC (‘times’ a b) ⇒ cTimes (evalC a) (evalC b)
evalC (def f a) ⇒ cdef (evalC f) (evalC a)
evalC (‘mu’ f) ⇒ cMu (evalC f)

Combining evalC with Ext we can assign to any name in Ucf an operator on
types:

let a : Ucf n Xs : Fin n → ⋆
eval a Xs : ⋆

eval a Xs ⇒ Ext (evalC a) Xs

The advantage is that we can apply our operators to any types, not just those
which have name. Using the solution to exercise 13 we also obtain a generic map
function.

So far we have only interpreted the type names, i.e. the inhabitants of Ucf n,
what about the elements, i.e. the inhabitants of Elcfaas? Using Ext we can define

a semantic version of Elcf:

data n : Nat
CTel n : ⋆

where
ctnil : Tel zero

a : Cont n as : Tel n
ctcons a as : Tel (suc n)

let Cs : Tel n i : Fin n
TelEl Cs i : ⋆

TelEl Cs i ⇐ rec Cs

TelEl Cs i ⇐ case i

TelEl Cs fz ⇐ case Cs

TelEl (tcons C Cs) fz ⇒ Ext C (TelEl Cs)
TelEl Cs (fs i) ⇐ case Cs

TelEl (tcons C Cs) (fs i) ⇒ TelEl Cs i

let C : Cont n Cs : Tel n
CEl C Cs : ⋆

CEl C Cs ⇒ Ext C (TelEl Cs)

Exercise 15. Implement semantic counterparts of the constructor for Elcf giving
rise to an interpretation of Elcf by CEl. Indeed, this interpretation is exhaustive
and disjoint.

5.7 Small containers

We have given a translation of the context-free types as containers, but as ex-
ercise 14 shows, these capture more than just the context-free types, in fact
it corresponds to the strictly positive universe. As a result we cannot derive a
semantic version of generic equality which is typical of the smaller universe.

We can, however, define a notion of container which captures precisely the
context-free types and give a semantic version geq for these containers which
we christen ‘small containers’.

A container is small if there is a decidable equality on its shapes and if the
positions at a given shape are finite, so:

let A : ⋆
DecEq A : ⋆

DecEq A ⇒ ∀a, a′ :A ⇒Dec (a = a′)

data n : Nat
SCont n : ⋆

where
S : ⋆ eqS : DecEq S P : Fin n → S → Nat

scont S eqS P : SCont n

data C : SCont Xs : Fin n → ⋆
SExt C Xs : ⋆

where
s : S f : ∀i :Fin n ⇒Fin (P i s) → Xs i

sext s f : SCont S eq P

We can redefine the variable case, disjoint union, products and the fix point
operator for these containers, for instance:

let
C ,D : SCont n

SCTimes C D : Cont n

SCTimes C D ⇐ case C

SCTimes (scont S eqS P) D ⇐ case D

SCTimes (scont S eqS P) (scont T eqT Q)
⇒ scont (Times S T)

(TimesEq eqS eqT)
(λi ; s ⇒plus (P i s) (Q i s))

Where TimesEq is a proof that cartesian product preserves decidable equality
by comparing pointwise:

let
eqS : DecEq S eqT : DecEq T

TimesEq eqS eqT : DecEq (Times S T)

Our generic equality for small containers is then a proof that SExt preserves
equality:

let
C : SCont n Xs : Fin n → ⋆ eqs : ∀i :Fin n ⇒DecEq (Xs i)

SContEq C Xs eqs : DecEq (SExt C Xs)

Exercise 16. Complete the construction of SCTimes and develop operators con-
structing disjoint union, local definition, fixed points, and variables for small
containers. Finally construct the definition of SContEq.

To work with Epigram’s built in equality you will need to use the fact that
application preserves equality:

let
f , g : S → T a, b : S p : f = g q : a = b

applEq p q : f a = g b

applEq p q ⇐ case p

applEq refl q ⇐ case q

applEq refl refl ⇒ refl

And that constructors are disjoint, so for example Inl a = Inr b is a provably
empty type:

let
a : A b : B p : (Inl a : Plus A B) = (Inr b : Plus A B)

InlneqInr p : X

InlneqInr p ⇐ case p

6 Derivatives

In [24] Huet introduced the zipper as a datatype to represent a position within a
tree. The basic idea is that at every step on the path to the current position, we

remember the context left over. E.g. in the example of unlabelled binary trees,

data
BT : ⋆

where
leaf : BT

l , r : BT
node l r : BT

the corresponding zipper type is:

data
Zipper : ⋆

where l : Zipper r : BT
left l r : Zipper

l : BT r : Zipper
right l r : Zipper here : Zipper

here

We can think of a Zipper as a tree with one subtree chopped out at the place
marked here. One of the operations on a zipper is to plug a binary tree into its
hole, i.e. we define:9

let
z : Zipper t : BT

plug z t : BT

plug z t ⇐ rec z

plug z t ⇐ case z

plug (left l r) t ⇒ node (plug l t) r

plug (right l r) t ⇒ node l (plug r t)
plug here t ⇒ t

z t

Clearly, the zipper is a generic construction which should certainly work on
any context-free type. When trying to express the general scheme of a zipper,
Conor McBride realised that a zipper is always a sequence of basic steps which
arise as the formal derivative of the functor defining the datatype. I.e. if our
datatype is µX.F X , e.g. µX.1+X ×X in the example of binary trees, then the
corresponding zipper is List(∂F (µX.F X)). In the binary tree example F X =
1 + X × X and ∂F X = 2 × X . Indeed Zipper is isomorphic to List (2 × BT).

6.1 Derivatives of context-free types

We will here concentrate on the notion of the partial derivative of an n-ary
operator on types, which corresponds to the type of one hole contexts of the
given type. This is an alternative explanation of the formal laws of derivatives
and we shall define an operator on context-free types following this intuition:

let a : Ucf n i : Fin n
partial a i : Ucf n

9 Here we have chosen the root-to-hole representation of contexts. Huet’s hole-to-root
presentation uses the same datatype. Both are useful, with the choice depending on
where you need the most rapid access.

The parameter i denotes the argument on which we take the derivative, indeed
the partial derivative really is a variable binding operation, this is obliterated
by the usual notation ∂F

∂X
which really binds X .

We define this operation by structural recursion on a, let’s consider the poly-
nomial cases: what is the derivative, i.e. the type of one hole contexts of ‘plus’ab?
We either have a hole in an element of a or a hole in an element of b, hence:

partial (‘plus’ a b) i ⇒ ‘plus’ (partial a i) (partial b i)

Maybe slightly more interesting, what is the type of one-hole contexts of ‘times’ab?
A hole in a pair is either a hole in the first component, leaving the second intact
or symmetrically, a hole in the second, leaving the first intact. Hence we arrive
at

partial (‘times’ a b) i ⇒ ‘plus’ (‘times’ (partial a i) b) (‘times’ a (partial b i))

partial a i

b

a

partial b i

which indeed corresponds to the formal derivative of a product, although we
arrived at it using a rather different explanation. Unsurprisingly, the derivative
of a constant is ‘0’, since there are no holes to plug:

partial ‘0’ i ⇒ ‘0’
partial ‘1’ i ⇒ ‘0’

Structural operations like variables and weakening are usually ignored in
Calculus, an omission we will have to fill here to be able to implement partial
for those cases. In both cases we have to inspect i : for vl we have exactly one
choice if i = fz and none otherwise, hence we have:

partial vl fz ⇒ ‘1’
partial vl (fs i) ⇒ ‘0’

In the case of wk a the situation is reversed, there is no choice if i = fz and
otherwise we recur structurally:

partial (wk a) fz ⇒ ‘0’
partial (wk a) (fs i) ⇒ wk (partial a i)

The case of local definitions def f a corresponds to the chain rule in Calculus.
An i - hole in an element of def f a is either a (fs i) hole in the outer f , or it is

a hole in f for the defined variable fz together with an i -hole in some a. More
formally we have:

partial (def f a) i

⇒ ‘plus’ (def (partial f (fs i)) a) (‘times’ (def (partial f fz) a) (partial a i))

··
·

→fs i
··
·

→fz

··
·

→i
··
·

→fz

The case for initial algebras ‘mu’ f has no counterpart in calculus. However,
it can be derived using the chain rule above: we know that ‘mu’ f is isomorphic
to def f (‘mu’ f). Now using the chain rule we arrive at

‘plus’ (def (partial f (fs i)) (‘mu’ f))
(‘times’ (def (partial f fz) (‘mu’ f)) (partial (‘mu’ f) i))

This expression is recursive in partial (‘mu’ f) i hence we obtain the formal
derivative by taking the initial algebra of it, recording the contexts for a sequence
of internal steps through the tree, terminated by the node with the external hole:

partial (‘mu’ f) i ⇒ ‘mu’ (‘plus’ (wk (def (partial f (fs i)) (‘mu’ f)))
(‘times’ (wk (def (partial f fz) (‘mu’ f))) vl))

· · ·
··
·

→fs i
··
·

→fz

→fz

→fz

A closer analysis shows that the use of initial algebras here is justified by the
fact that we are only interested in holes which appear at some finite depths.

As an example consider the derivative of lists partial list fz: after applying
some simplification we obtain ‘mu’(‘plus’(wklist)(‘times’vl(wkvl))) or reexpressed
in a more standard notation µX .(list A)+A×X , which can be easily seen to
correspond to lists with a hole for A.

We summarize the definition of partial:

partial a i ⇐ rec a

partial a i ⇐ case a

partial vl i ⇐ case i

partial vl fz ⇒ ‘1’
partial vl (fs i) ⇒ ‘0’

partial (wk a) i ⇐ case i

partial (wk a) fz ⇒ ‘0’
partial (wk a) (fs i) ⇒ wk (partial a i)

partial ‘0’ i ⇒ ‘0’
partial (‘plus’ a b) i ⇒ ‘plus’ (partial a i) (partial b i)
partial ‘1’ i ⇒ ‘0’
partial (‘times’ a b) i ⇒

‘plus’ (‘times’ (partial a i) b) (‘times’ a (partial b i))
partial (def f a) i ⇒

‘plus’ (def (partial f (fs i)) a) (‘times’ (def (partial f fz) a) (partial a i))
partial (‘mu’ f) i ⇒ ‘mu’ (‘plus’ (wk (def (partial f (fs i)) (‘mu’ f)))

(‘times’ (wk (def (partial f fz) (‘mu’ f))) vl))

Exercise 17. Calculate (by hand) the derivative of rose trees, i.e. the value of
partial fz rt

6.2 Generic plugging

To convince ourselves that the definition of derivatives as one hole contexts given
above is correct we derive10 a generic version of the generic plugging operation:

let
a i x : Elcf (partial a i) as y : Elcf (var i) as

gplug a i x y : Elcf a as

That is given an element x of a partial derivative of a at i we can fill the hole
with an element of the corresponding type of the telescope, obtaining an element
of a.

We construct gplug by recursion over x , however, unlike in the previous ex-
amples, which were completely data driven we have to analyse the type directly,
i.e. we have to invoke case a. We discuss the cases:

variable

gplug vl fz void y ⇒ y

gplug vl (fs i) x y ⇐ case x

If the index is fz the argument y is the filler we are looking for, otherwise the
derivative is the empty type and we eliminate it by a vacuous case analysis.

10 We were unable to convince Epigram to check all of the definition below due to a
space leak in the current implementation. We are hopeful that this will be fixed in
the next release of Epigram.

weakening

gplug (wk a) fz x y ⇐ case x

gplug (wk a) (fs i) (pop x) (pop y) ⇒ pop (gplug a i x y)

This is in some way dual to the previous case: if the index is fz we have the
empty derivative, otherwise we recur.

constant types

gplug ‘0’ i x y ⇐ case x

gplug ‘1’ i x y ⇐ case x

are easy because impossible, since the derivative is the empty type.

disjoint union

gplug (‘plus’ a b) i (inl xa) y ⇒ inl (gplug a i xa y)
gplug (‘plus’ a b) i (inr xb) y ⇒ inr (gplug b i xb y)

the injections are just carried through.

Product

gplug (‘times’ a b) i (inl (pair xa xb)) ⇒ pair (gplug a i xa y) xb

gplug (‘times’ a b) i (inr (pair xa xb)) ⇒ pair xa (gplug b i xb y)

The derivative records the information in which component of the pair we
can find the hole.

Local definition

gplug (def f a) i (inl (push x)) y ⇒ push (gplug f (fs i) x (pop y))
gplug (def f a) i (inr (pair (push x) q) y ⇒

push (gplug f fz x (top (gplug a i q y)))

In the first case the hole is in top-level (f) tree but not at the first variable,
which is used in the definition. In the 2nd case the hole is in a subtree (a)
which means we have to plug the hole there and then use the result to plug
a hole in the top-level tree.

Exercise 18. Complete (using pen and paper) the definition of gplug by imple-
menting the case for mu.

6.3 Derivatives of containers

Previously, we have defined derivatives by induction over the syntax of types.
Using containers we can give a more direct, semantic definition. The basic idea
can be related to derivatives of polynomials, i.e. the derivative of f x = xn is

f ′ x = n × xn−1. As a first step we need to find a type-theoretic counterpart to
the predecessor of a type by removing one element of the type. We define:

data A : ⋆ a : A
Minus A a : ⋆

where
a′ : A na : Not (a = a′)

minus a na : Minus A a′

We can embed Minus A a back into A:

let m : Minus A a
emb m : A

emb m ⇐ case m

emb (minus a′ na) ⇒ a′

We can analyse A in terms of MinusAa by defining a view. An element of A

is either a or it is in the range of emb:

data
a; a′ : A

MinusV a a′

where
same a : MinusV a a

m : Minus A a
other m : MinusV a (emb m)

This view is exhaustive, if A has a decidable equality:

let
a, a′ : A eq : Dec (a = a′)

minusV′ a a′ eq : MinusV a a′

minusV′ a a′ eq ⇐ case eq

minusV′ a a (yes refl) ⇒ same a

minusV′ a a′ (no f) ⇒ other (minus a′ f)

let
eqA : DecEq A a, a′ : A

minusV eqA a a′ : MinusV a a′

minusV eqA a a′ ⇒ minusV′ a a′ (eqA a a′)

We are now ready to construct the derivative of containers and implement
a variant plug for containers. To simplify the presentation we first restrict our
attention to unary containers.

Given a unary container ucont S P its derivative is given by shapes which
are the original shapes together with a chosen position, i.e. Sigma S P . The new
type of positions is obtained by subtracting this chosen element from P hence
we define:

let
P : S → ⋆ sp : Sigma S P

derivP P sp : ⋆

derivP P sp ⇐ case sp

derivP P (tup s p) ⇒ Minus (P s) p

and hence the derivative of a unary container is given by:

let C : UCont
derivC C : UCont

derivC C ⇐ case C

derivC (ucont S P) ⇒ ucont (Sigma S P) (derivP P)

While the definition above works for any unary container, we need decidabil-
ity of equality on positions to define the generic plugging operation. Intuitively,
we have to be able to differentiate between position to identify the location of
a hole. Hence, only containers with a decidable equality are differentiable. We
define a predicate on containers:

data C : UCont
DecUCont C : ⋆

where
decP : ∀s :S ⇒DecEq (P s)

decUCont decP : DecUCont (ucont S P)

Given a decidable unary container we can define the function uplug which given
an element of the extension of the derivative of a container x : UExt(derivCC)X
and an element y : X we can plug the hole with y thus obtaining an element of
UExt C X :

let

eq : DecEq A a : A

f : Minus A a → X

x : X a′ : A

mplug eq a f x a′ : X

mplug eq a f x a′ ⇐ view minusV eq a a′

mplug eq a f x a ⇒ x

mplug eq a f x (emb m) ⇒ f m

let

C : UCont d : DecUCont C

x : UExt (derivC C) X y : X

uplug C d x y : UExt C X

uplug C d x y ⇐ case C

uplug (ucont S P) d x y ⇐ case d

uplug (ucont S P) (decUCont decP) x y ⇐ case x

uplug (ucont S P) (decUCont decP) (uext sp f) y ⇐ case sp

uplug (ucont S P) (decUCont decP) (uext (tup s p) f) y

⇒ uext a (mplug (decP a) b f y)

Exercise 19. Extend the derivative operator for containers to n-ary containers,
i.e. define

let C : Cont n i : Fin n
partialC C i : Cont n

To extend the plug operator we have to define decidability for an n-ary container.
We also need to exploit that equality for finite types is decidable.

7 Conclusions and further work

Using dependent types we were able to define different universes and generic
operations on them. We have studied two fundamentally different approaches:
a semantic approach, first using finite types and the container types and a syn-
tactic approach where the elements are defined inductively. Further work needs

to be done to relate the two more precisely, they are only two views of the same
collection of types. We have already observed that there is a trade-off between
the size of the universe, i.e. the collection of types definable within it, and the
number of generic operations. The previous section suggests that between the
context-free types and the strictly positive types: the differentiable types, i.e. the
types with a decidable equality on positions. Previous work in a more categor-
ical framework [7] shows already that the types which are obtained by closing
context-free types under a coinductive type former (ν) are still differentiable.

The size of a universe is not the only parameter we can very, the universes we
have considered here are still very coarse. E.g. while we have a more refined type
system on the meta-level, dependent types, this is not reflected in our universes.
We have no names for the family of finite types, the vectors or the family of
elements of a universe itself. Recent work shows that it is possible to extend
both the syntactic and the semantic approach to capture families of types, see
[34, 8]. Another direction to pursue is to allow types where the positions are result
of a quotient, like bags or multisets. We have already investigated this direction
from a categorical point of view [6]; a typetheoretic approach requires a Type
Theory which allows quotient types. Here our current work on Observational

Type Theory [10] fits in very well.
Apart from the more theoretical questions regarding universes of datatypes

there are more pragmatic issues. We don’t want to work with isomorphic copies
of our datatypes, but we want to be able to access the top-level types them-
selves. We are working on a new implementation of Epigram which will provide
a quotation mechanism which makes the top-level universe accessible for the pro-
grammer. We also hope to be able to find a good pragmatic answer to vary the
level of genericity, i.e. to be able to define generic operations for the appropriate
universe without repeating definitions.

References

1. Michael Abbott. Categories of Containers. PhD thesis, University of Leicester,
2003.

2. Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Categories of containers.
In Proceedings of Foundations of Software Science and Computation Structures,
2003.

3. Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Representing nested in-
ductive types using W-types. In Automata, Languages and Programming, 31st
International Colloqium (ICALP), pages 59 – 71, 2004.

4. Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers - constructing
strictly positive types. Theoretical Computer Science, 342:3–27, September 2005.
Applied Semantics: Selected Topics.

5. Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Derivatives
of containers. In Typed Lambda Calculi and Applications, TLCA, 2003.

6. Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Construct-
ing polymorphic programs with quotient types. In 7th International Conference
on Mathematics of Program Construction (MPC 2004), 2004.

7. Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. ∂ for
data. Fundamentae Informatica, 65(1,2):1 – 28, March 2005. Special Issue on
Typed Lambda Calculi and Applications 2003.

8. Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and Peter Mor-
ris. Indexed containers. Manuscript, available online, February 2006.

9. Thorsten Altenkirch and Conor McBride. Generic programming within depen-
dently typed programming. In Generic Programming, 2003. Proceedings of the
IFIP TC2 Working Conference on Generic Programming, Schloss Dagstuhl, July
2002.

10. Thorsten Altenkirch and Conor McBride. Towards observational type theory.
Manuscript, available online, February 2006.

11. Thorsten Altenkirch, Conor McBride, and James McKinna. Why dependent types
matter. Manuscript, available online, April 2005.

12. Thorsten Altenkirch, Conor McBride, and Peter Morris. Code for generic program-
ming with dependent types, 2007. http://www.e-pig.org/downloads/GPwDT.

13. Thorsten Altenkirch and Tarmo Uustalu. Normalization by evaluation for λ
→2. In

Functional and Logic Programming, number 2998 in LNCS, pages 260 – 275, 2004.

14. Andres Loeh, Johan Jeuring (editors); Dave Clarke, Ralf Hinze, Alexey Rodriguez,
Jan de Wit. Generic Haskell User’s Guide – Version 1.42 (Coral). Technical Re-
port UU-CS-2005-004, Institute of Information and Computing Sciences, Utrecht
University, 2005.

15. Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lambert Meertens. Generic
Programming—An Introduction. In S. Doaitse Sweierstra, Pedro R. Henriques, and
José N. Oliveira, editors, Advanced Functional Programming, Third International
Summer School (AFP ’98); Braga, Portugal, volume 1608 of LNCS, pages 28–115.
Springer-Verlag, 1998.

16. M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs and proofs
in dependent type theory. Nordic Journal of Computing, 10(4):265–289, 2003.

17. Karl Crary, Stephanie Weirich, , and Greg Morrisett. Intensional polymorphism
in type erasure semantics. Journal of Functional Programming, 12(6):567–600,
November 2002.

18. P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive definitions.
Typed Lambda Calculi and Applications, 1581:129–146, 1999.

19. P. Dybjer and A. Setzer. Indexed induction–recursion. Journal of Logic and Alge-
braic Programming, 66(1):1–49, 2006.

20. Peter Dybjer. Inductive Sets and Families in Martin-Löf’s Type Theory. In Gérard
Huet and Gordon Plotkin, editors, Logical Frameworks. CUP, 1991.

21. Ralf Hinze. Generic programs and proofs. Habilitationsschrift, Universitt Bonn,
2000.

22. Ralf Hinze and Andres Löh. “Scrap Your Boilerplate” Revolutions. In Tarmo
Uustalu, editor, Mathematics of Program Construction, 2006, volume 4014 of
LNCS, pages 180–208. Springer-Verlag, 2006.

23. Ralf Hinze, Andres Löh, and Bruno C. D. S. Oliveira. “Scrap Your Boilerplate”
Reloaded. In Masami Hagiya and Philip Wadler, editors, FLOPS, volume 3945 of
Lecture Notes in Computer Science, pages 13–29. Springer, 2006.

24. Gérard Huet. The Zipper. Journal of Functional Programming, 7(5):549–554,
1997.

25. Andres Löh. Exploring Generic Haskell. PhD thesis, Utrecht University, Nether-
lands, September 2004.

26. Zhaohui Luo and Robert Pollack. LEGO Proof Development System: User’s Man-
ual. Technical Report ECS-LFCS-92-211, Laboratory for Foundations of Computer
Science, University of Edinburgh, 1992.

27. Lena Magnusson and Bengt Nordström. The ALF proof editor and its proof engine.
In Henk Barendregt and Tobias Nipkow, editors, Types for Proofs and Programs,
LNCS 806. Springer-Verlag, 1994. Selected papers from the Int. Workshop TYPES
’93, Nijmegen, May 1993.

28. Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis·Napoli, 1984.
29. Conor McBride. The Derivative of a Regular Type is its Type of One-Hole Con-

texts. Available online, 2001.
30. Conor McBride. Epigram, 2004. http://www.e-pig.org/.
31. Conor McBride. Epigram: Practical programming with dependent types. In Varmo

Vene and Tarmo Uustalu, editors, Advanced Functional Programming 2004, Lec-
ture Notes in Computer Science. Springer-Verlag, 2005+. Revised lecture notes
from the International Summer School in Tartu, Estonia.

32. Conor McBride and James McKinna. The view from the left. Journal of Functional
Programming, 14(1), 2004.

33. Fred McBride. Computer Aided Manipulation of Symbols. PhD thesis, Queen’s
University of Belfast, 1970.

34. Peter Morris, Thorsten Altenkirch, and Neil Ghani. Constructing strictly positive
families. In The Australasian Theory Symposium (CATS2007), January 2007.

35. Peter Morris, Thorsten Altenkirch, and Conor McBride. Exploring the regular
tree types. In Christine Paulin-Mohring Jean-Christophe Filliatre and Benjamin
Werner, editors, Types for Proofs and Programs (TYPES 2004), Lecture Notes in
Computer Science, 2006.

36. H. Pfeifer and H. Rueß. Polytypic abstraction in type theory. In Roland Backhouse
and Tim Sheard, editors, Workshop on Generic Programming (WGP’98). Dept. of
Computing Science, Chalmers Univ. of Techn. and Göteborg Univ., June 1998.

37. Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-Löf’s
type theory: an introduction. Oxford University Press, 1990.

38. Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones. Boxy type infer-
ence for higher-rank types and impredicativity. In Proceedings of the International
Conference on Functional Programming (ICFP) 2006, September 2006.

39. Philip Wadler. Views: A way for pattern matching to cohabit with data abstraction.
In Proceedings of POPL ’87. ACM, 1987.

40. Stephanie Weirich. RepLib: A library for derivable type classes. In Andres Löh,
editor, Proceedings of the ACM Haskell Workshop, 2006, 2006.

