
Representations of first order function types
as terminal coalgebras

Thorsten Altenkirch
txa@cs.nott.ac.uk

School of Computer Science and Information Technology
University of Nottingham, UK

Abstract. We show that function types which have only initial algebras
for regular functors in the domains, i.e. first order function types, can
be represented by terminal coalgebras for certain nested functors. The
representation exploits properties of ωop-limits and local ω-colimits.

1 Introduction

The work presented here is inspired by discussions the author had some years
ago with Healfdene Goguen in Edinburgh on the question Can function types
be represented inductively? or maybe more appropriately: Can function types be
represented algebraically?.

In programming and type theory the universe of types can be divided as
follows:

– function types (cartesian closure)
– algebraic types

• inductive types (initial algebras)
• coinductive types (terminal coalgebras)

In programming the difference between inductive and coinductive types is often
obliterated because one is mainly interested in the collection of partial objects
of a certain type. Inspired by Occam’s razor it would be interesting if we could
explain one class of types by another. Here we try to reduce function types to
algebraic types.

The first simple observation is that function spaces can be eliminated using
products if the domain is finite. Here we show that function spaces A → B
can be eliminated using coinductive types if the domain A is defined induc-
tively. It is interesting to note that ordinary coinductive types are sufficient
only for functions over linear inductive types (i.e. where the signature functor
has the form T (X) = A1 ×X + A0) but in general we need to construct func-
tors defined by terminal coalgebras in categories of endofunctors. Those corre-
spond to nested or nested datatypes which have been the subject of recent work
[BM98,AR99,Bla00].



1.1 Examples

We give some examples which are instances of our general construction , propo-
sition 8. We use the usual syntax for products and coproducts and µX.F (X) to
denote initial algebras and νX.F (X) for terminal coalgebras. See section 2 for
the details. The isomorphisms stated below exist under the condition that the
ambient category has the properties introduced later, see section 3. A category
which satisfies these properties is the category of sets whose cardinality is less
or equal ℵ1. Note that this category is not cartesian closed.

Natural Numbers Natural numbers are given by Nat = µX.1 + X, i.e. they
are the initial algebra of the functor1 T (X) = 1 +X.We have that

(µX.1 +X)→ B ' νY.B × Y,

where νY.B×Y is the terminal coalgebra of the functor T ′(X) = B×X — this
is the type of streams or infinite lists over B.

Using the previous isomorphism we obtain a representation of countable or-
dinals using only algebraic types. The type Ord = µX.1 +X + (Nat→ X) can
be represented as

Ord ' µX.1 +X + νY.X × Y
Note, however, that there is no representation for functions over Ord and hence
there seems to be no representation of the next number class using only coin-
ductive types.

Lists We assume as given a type A for which we already know how to construct
function spaces. Then lists over A are given by List(A) = µX.1 +A×X and we
have

(µX.1 +A×X)→ B ' νY.B × (A→ Y )

The right hand side defines B-labelled, A-branching non-wellfounded trees. Com-
bining this with the first case we obtain a representation for functions over lists
of natural numbers:

List(Nat)→ B ' νY.B ×Nat→ Y

' νY.B × (νZ.Y × Z)

Binary Trees By considering functions over binary trees BTree = µX.1+X×X
we leave the realm of linear inductive types. The type of functions over trees is
given by:

(µX.1 +X ×X)→ B ' (νF.ΛX.X × F (F (X)))(B)

1 We only give the effect on objects since the morphism part of the functor can be
derived from the fact that all the operations we use are functorial in their arguments,
i.e. T can be extended on morphisms by T (f) = 1 + f .



Here the right hand side is read as the terminal coalgebra over the endofunctor
H(F ) = ΛX.X×F (F (X)) on the category of endofunctors. There seem to be two
ways to extend H to morphisms, i.e. given a natural transformation α ∈ F → G

H1(α)A = αA × (G(αA) ◦ αFA)

H2(α)A = αA × (αGA ◦ F (αA))

However, it is easy to see that the naturality of α implies H1(α) = H2(α).
The type νF.ΛX.X × F (F (X)) has a straightforward representation in a

functional programming language like Haskell which allows nested datatypes.
A variation of this type, namely µF.ΛX.1 + X × F (F (X)), is used in [BM98]
as an example for nested datatypes under the name Bushes. We can represent
νF.ΛX.X × F (F (X)) as

data BTfun x = Case x (BTfun (BTfun x))

Here we consider only total elements of a type which entails that we have to
differentiate between inductive and coinductive interpretations of recursively de-
fined type. We interpret BTfun coinductively, which is sensible since the inductive
interpretation is empty.

We assume that binary trees BT are defined as

data BT = L | Sp BT BT

This time we interpret the type inductively!
The two parts of an isomorphism which we call lamBT and appBT can be

programmed in Haskell 2 :

lamBT :: (BT → a) → BTfun a

lamBT f = Case (f L) (lamBT (λ t → lamBT (λ u → f (Sp t u))))

appBT :: BTfun a → BT → a

appBT (Case a f) t = case t of L → a

Sp tl tr → appBT (appBT f tl) tr

Since we use polymorphic recursion it is essential to give the types of the two
functions explicitly.

Finite Trees As a last example we shall consider functions over finitely branch-
ing trees which are interesting because they are defined using interleaving in-
ductive types, i.e.

FTree = µX.List(X)

= µX.µY.1 +X × Y

The function type over finite trees can be represented as follows:

(µX.µY.1 +X × Y )→ B ' (νF.νG.ΛZ.Z × F (G(Z)))(B)

2 We take the liberty of writing λ for \ and → for ->.



1.2 Related work

After having completed most of the technical work presented in this paper it was
brought to our attention that Ralf Hinze had already discovered what amounts to
essentially the same translation in the context of generic functional programming
[Hin00b,Hin00a]. His motivation was of a more practical nature: he was looking
for a generic representation of memo functions. One of the anonymous referees
pointed out that this construction was anticipated in a note by Geraint Jones
[Jon98].

The present paper can be viewed as providing a more detailed categorical
underpinning of Hinze’s construction. In some regards however, our approaches
differ fundamentally:

– We adopt a categorical perspective in which functions are total, in that
exponentiation is right adjoint to products, where Hinze deals with partial
functions (and hence a monoidally closed structure).

– As a consequence of this we differentiate between inductive and coinductive
types. It also means that we cannot use fixpoint induction (as suggested by
Hinze) but have to rely on using ω-limits and colimits explicitly.

– We show the existence of the exponentials whereas Hinze only shows that
they are isomorphic to already existing ones.

– Hinze’s programs require 2nd order impredicative polymorphism whereas our
construction takes place in a predicative framework (compare also section
6).

1.3 Acknowledgments

I would like to thank Healfdene Goguen for inspiring this line of research, Thomas
Streicher for valuable help on categorical questions, Peter Hancock for interesting
email discussions and for pointing out Ralf Hinze’s work to me, and Roland
Backhouse for discussions on the use of fusion in this context. Dirk Pattinson
provided valuable feedback on a draft version. I would also like to thank the
anonymous referees whose comments I tried to incorporate to the best of my
abilities.

2 Preliminaries

We work with respect to some ambient category C whose properties we shall
make precise below. We assume that C is bicartesian, i.e. has all finite products
(written 1, A×B) and finite coproducts (written 0, A+B). We write !A ∈ A→ 1
and ?A ∈ 0 → A for the universal maps. Notationally, we use → for homsets
and ⇒ for exponentials. We do not assume that C is cartesian closed.

We assume the existence of ωop-limits and ω-colimits. Here ω stands for
the posetal category (ω,≤) and by ωop-completeness we mean that limits of all
functors F ∈ ωop → C exist, i.e.

A→ lim(F ) ' ∆(A)→̇F



where ∆(A) = ΛX.A is the constant functor. We write πF ∈ ∆(lim(F ))→ F for
the projection and for the back direction of the isomorphism: prodF (α) ∈ A→
lim(F ) given α ∈ ∆(A)→̇F .

Dually, by ω-cocompleteness we mean that all colimits of functors F ∈ ω → C
exist, i.e.

colim(F )→ A ' F→̇∆(A)

We write injF ∈ F→̇∆(colim(F )) for the injection and for the inverse case(α) ∈
colim(F )→ A given α ∈ F→̇∆(A).

A functor T ∈ C→ C is called ωop-continuous (ω-cocontinuous) if it preserves
all ωop-limits (ω-colimits) up to isomorphism. We write

ΨT ∈ T (lim(F )) ' lim(T ◦ F )

ΨT ∈ T (colim(F )) ' colim(T ◦ F )

It is easy to see that coproducts preserve colimits and products preserve limits
and hence the appropriate operations on functors are (co-)continuous. We will
later identify the precise circumstances under which products preserve colimits.

Given an endofunctor T ∈ C→ C the category of T -algebras has as objects
(A ∈ C, f ∈ T (A) → A) and morphisms h ∈ (A, f) → (B, g) are given by
h ∈ A→ B s.t. g ◦ T (h) = h ◦ f . We denote the initial T -algebra by (µT, inT ∈
T (µT ) → µT ). Given any T -algebra (A, f) the unique morphism (often called
a catamorphism) is written as foldT (f) ∈ µT → A. Dually, the category of T -
coalgebras has as objects (A ∈ C, f ∈ A→ T (A)) and morphisms h ∈ (A, f)→
(B, g) are given by h ∈ A → B s.t. g ◦ h = T (h) ◦ f . The terminal T -coalgebra
is written as (νT, outT ∈ νT → T (νT )) and given a coalgebra (A, f) the unique
morphism (often called anamorphism) is written unfoldT (f) ∈ A→ νT .

For completeness we review some material from [Ada74,PS78] Given an end-
ofunctor T ∈ C→ C and i ∈ ω we write T i ∈ C→ C for the ith iteration of T .
We define ChainT ∈ ω → C and ChainT ∈ ωop → C:

ChainT (i) = T i(1)

ChainT (i ≤ j) = T i(!ChainT (j−i))

ChainT (i) = T i(0)

ChainT (i ≥ j) = T j(?ChainT (i−j))

Proposition 1 (Adamek,Plotkin-Smyth). Given a ωop-complete and
ω-cocomplete category C and an an endofunctor T ∈ C→ C we have that:

1. If T is ω-cocontinuous then the initial algebra exists and

mu(T ) ' colim(ChainT ).

2. If T is ω-continuous then the terminal coalgebra exists and

ν(T ) ' lim(ChainT )



3 Locality

Since we do not assume that our ambient category is closed we have to be more
precise w.r.t coproducts, colimits and initial algebras. We require that all those
concepts exist locally. Given an object Γ which corresponds to a type context the
local category wrt. Γ has the same objects as C and as morphisms f ∈ Γ ×A→
B. The local identity is just the projection π2 ∈ Γ ×A→ A and composition of
f ∈ Γ ×A→ B and g ∈ Γ ×B → C is given by g ◦ (1, f) ∈ Γ ×A→ C. We say
that X are local , if X exists in all local categories and coincide with global X.

A local functor is given by a function on objects and a natural transformation:

stT ∈ (Γ ×A→ B)→̇(Γ × T (A)→ T (B))

natural in Γ which preserves local identity and composition:

stT (π2) = π2

stT (g ◦ (1, f)) = stT (g) ◦ (1, stT (f))

where f ∈ Γ ×B → C and g ∈ Γ ×A→ B.

Alternatively this can be formalized via a natural transformation

θTΓ,A ∈ Γ × T (A)→̇T (Γ ×A)

subject to the appropriate conditions but this can easily be seen to be equivalent.
Traditionally, local functors are called strong [CS92]. We diverge from this

use because we want to apply the idea of locality also to other concepts like
colimits and coalgebras and here the word strong is already used to signal that
the uniqueness condition holds.

Proposition 2.

1. Products are local.
2. ω-limits are local.
3. Terminal coalgebras of local functors are local.

Proof. (Sketch): 3. Given a local T -coalgebra f ∈ Γ×A→ T (A) the local unfold
is given by

unfold∗T (f) ∈ Γ ×A→ νT

unfold∗T (f) = unfoldT (θTΓ,A ◦ (1, f))

However, the same does not hold for coproducts, colimits or initial algebras.
E.g. coproducts are not local in CPO⊥. This asymmetry is caused by the fact
that the notion of local morphisms is not self dual.

Local coproducts are given by the following families of isomorphisms:

Γ × 0→X ' 1

Γ × (A+B)→X ' (Γ ×A→ X)× (Γ ×B → X)



natural in Γ . Given a functor F ∈ ωop → C (not necessary local) the ω-colimit
is local if the following family of isomorphisms exist:

Γ × colim(F )→ C ' ∆(Γ )× F→̇∆(C)

We say that a functor is locally cocontinuous if it preserves local colimits
and again it is easy to see that local coproducts preserve local colimits. In the
special case of local ω-colimits we also have

Proposition 3. Products preserve local ω-colimits:

colim(F )× colim(G) ' colim(F ×G)

Proof. (Sketch) For simplicity we only consider the case of Γ = 1. Using locality
we show that

colim(F )× colim(G)→ A ' (Λ(i, j) ∈ ω × ω.F (i)×G(j))→̇∆(A)

Using the fact that either i ≤ j or j ≤ i we can show that the right hand side is
isomorphic to

(Λi ∈ ω.F (i)×G(i))→̇∆(A)

Assuming that T is a local endofunctor, a local T -algebra with respect to Γ is
given by f ∈ Γ × T (A)→ A and given another local algebra g : Γ × T (B)→ B
then a morphism h ∈ f → g is given by h ∈ Γ × A → B s.t. h ◦ (1, f) =
g ◦ (1, st(h)). Saying that an initial algebra (µT, inT ∈ T (µT ) → µT ) is local
means that inT ◦ π2 ∈ Γ × T (µT )→ µT is an initial local T -algebra.

Definition 1. We call a category C locally ω-bicomplete if the following condi-
tions hold:

1. C has all finite products.
2. C is ωop-complete, i.e. it has all ωop-limits.
3. C has all local finite coproducts.
4. C is locally ω-cocomplete, i.e. it has all local ω-colimits.

We assume that the ambient category C is locally ω-complete. We note that the
initial algebra representation theorem can be localized:

Proposition 4. Given a cocontinuous local endofunctor T : Then in the presence
of local ω-colimits the representation of proposition 1 gives rise to a local initial
algebra.

Finally, we remark that the reason that the question of locality has so far
got only very little attention in programming language theory is because here
the ambient category is usually assumed to be cartesian closed and we have:

Proposition 5. Assuming that our ambient category C is cartesian closed we
have



1. Coproducts are local.
2. ω-colimits are local.
3. Initial algebras of local functors are local.

Proof. (Sketch): 3. Let

appΓ,A ∈ Γ × (Γ ⇒ A)→ A

λΓ,A(f) ∈ B → (Γ ⇒ A) given f ∈ Γ ×B → A.

be twisted versions of the usual morphisms. Now, given f ∈ Γ × T (A)→ A we
define

fold∗T (f) = app(foldT (λ(f ◦ st(app))))

∈ Γ × µ(T )→ A

4 The µ-ν property

We shall now establish the main technical lemma of this paper which relates
function spaces whose domains are initial algebras to terminal coalgebras. We
say that an object A ∈ C is exponentiable if for all B ∈ C: A ⇒ B exists and
there is an isomorphism

Γ ×A→ B ' Γ → A⇒ B

which is natural in Γ . We define C∗ as the full subcategory of exponentiable
objects.

Given a functor F ∈ ωop → C∗ and an object C ∈ C we define

F ⇒ C ∈ ω → C
(F ⇒ C)(i) = F (i)⇒ C

Note that F ⇒ C 6= F ⇒ ∆(C).

Lemma 1.
Γ × colim(F )→ C ' Γ → lim(F ⇒ C)

natural in Γ .

Proof. Straightforward unfolding of definitions.

Note that local colimits are essential here. We also know that limits in functor
categories can be calculated pointwise:

Lemma 2. Let F ∈ ω → (C⇒ C) then we have

lim(F )(C) ' lim(Λi.F (i, C))

natural in C.



Lemma 3. Given an ω-cocontinuous local functor F ∈ C∗ → C∗ which pre-
serves exponentiability and an ω-continuous functor G ∈ (C ⇒ C) → (C ⇒ C)
s.t. for all exponentiable objects A

F (A)⇒ B ' G(ΛX.A⇒ X)(B) (H)

which is natural in B then we have:

1. For all i ∈ ω:

ChainF (i)⇒ C ' ChainG(i)(C)

natural in C.
2.

Γ × µ(F )→ C ' Γ → (νG)(C)

natural in Γ,C.

Proof.

1. By induction over i:

0

ChainF (0)⇒ C = 0⇒ C

' 1 Since 0 is local.

= ChainG(0)(C) Since ChainG(0) = ∆(1).

i+ 1

ChainF (i+ 1)⇒ C = F (ChainF (i))⇒ C

' G(ΛX.ChainF (i)⇒ X)(C) (H)

' G(ChainG(i))(C) ind.hyp.

' ChainG(i+ 1)(C)

2.

Γ × µ(F )→ C ' Γ × colim(ChainF )→ C by prop. 4.

' Γ → lim(ChainF ⇒ C) by lemma 1.

' Γ → lim(ChainG)(C) by 1.

' Γ → ν(G)(C) by prop. 1.

5 The representation theorem

We will now establish that function spaces whose domain is an inductive regular
type can be isomorphically represented by coinductive nested types.



The set of inductive regular functors of arity n: INDn ⊆ Cn → C is induc-
tively defined by the following rules:

0 ≤ i < n

ΛX.Xi ∈ INDn ΛX.0, ΛX.1 ∈ INDn

F,G ∈ INDn
ΛX.F (X) +G(X), ΛX.F (X)×G(X) ∈ INDn

F ∈ INDn+1

ΛX.µY.F (X, Y ) ∈ INDn

An inductive regular type is just an inductive regular functor of arity 0.

Proposition 6. All inductive regular functors are local and locally ω-cocontinuous.

Proof. (Sketch): By induction over the structure of IND. Locality simply follows
from the fact that we use local coproducts and colimits and that projections and
products are local anyway.

ω-cocontinuity follows from the fact that local coproducts preserve colimits
and local initial algebras preserve local colimits since they correspond to local
colimits (proposition 4). The case of products is covered by proposition 3.

We now define the set of coinductive nested functors of arity n: COINDn ⊆
(C⇒ C)

n → C⇒ C inductively:

0 ≤ i < n

ΛF .Fi ∈ COINDn ΛF , X.1, ΛF , ΛX.X ∈ COINDn

G,H ∈ COINDn
ΛF , X.G(F , X)×H(F , X), ΛF .G(F ) ◦G(F ) ∈ COIND0

G ∈ COINDn+1

ΛF .νH.G(F , H) ∈ COINDn

A coinductive nested type is a coinductive nested functor of arity 0 applied to
any type (i.e. definable object).

Proposition 7. All coinductive nested functors are ωop-continuous.

Proof. (Sketch): Follows from the fact that products and limits preserve limits.



We now assign to every inductive regular functor F ∈ INDn a coinductive
nested type F̂ ∈ COINDn which represents the function space in the sense
made precise below.

F (X) = Xi F̂ (H) = Hi

F (X) = 0 F̂ (H) = ΛX.1

F (X) = F1(X) + F2(X) F̂ (H) = ΛX.F̂1(H)× F̂2(H)

F (X) = 1 F̂ (H) = ΛX.X

F (X) = F1(X)× F2(X) F̂ (H) = F̂1(H) ◦ F̂2(H)

F (X) = µY.F ′(X, Y ) F̂ (H) = νG.F̂ ′(H, G)

Proposition 8. Given F ∈ INDn and A ∈ C∗ define Hi = ΛX.Ai ⇒ X. We
have that

Γ × F (A)→ B ' Γ → F̂ (H, B)

which is natural in B

Proof. By induction over the structure of F :

F ((X)) = Xi

Γ × F (A)→ B = Γ ×Ai → B

' Γ → Ai ⇒ B

= Γ → F̂ (H, B)

F (X) = 0

Γ × F (A)→ B = Γ × 0→ B

' Γ → 1 strong initial object

= Γ → F̂ (H, B)

F (X) = F1(X) + F2(X)

Γ × F (A)→ B = Γ × F1(A) + F2(A)→ B

' (Γ × F1(A)→ B)× (Γ × F2(A)→ B) strong coproducts

' (Γ → F̂1(H, B))× (Γ → F̂2(H, B)) ind.hyp.

' Γ → F̂1(H, B)× F̂2(H, B)

= Γ → F̂ (H, B)

F (X) = 1

Γ × F (A)→ B = Γ × 1→ B

' Γ → B

= Γ → F̂ (H, B)



F (X) = F1(X)× F2(X)

Γ × F (A)→ B = Γ × F1(A)× F2(A)→ B

' Γ × F1(A)→ F2(A)⇒ B

' Γ → F1(A)⇒ F2(A)⇒ B

' Γ → F̂1(H, F2(A))⇒ B) ind.hyp(F1)

' Γ → F̂1(H, F̂2(H, B)) ind.hyp(F2)

= Γ → (F̂1(H) ◦ F̂2(H))(B)

= Γ → F̂ (H, B)

F (X) = µY.F ′(X, Y )

Γ × F (A)→ B = Γ × µY.F ′(A, Y )→ B

' Γ → (νG.F̂ ′(H, G))(B) (*)

= Γ → F̂ (H, B)

To justify (*) we apply lemma 3,2. to ΛY.F ′(A, Y ) and ΛG.F̂ ′(H, G). Preser-
vation of exponentials and (H) follows from the ind.hyp.

Corollary 1. Every function space A ⇒ B where A ∈ IND0 is an inductive
regular type can be represented as a coinductive nested type Â(B).

6 Using Fusion ?

Roland Backhouse remarked that the central lemma 3 could be proven using the
fusion theorem of [BBvGvdW96], pp.76:

Proposition 9 (Fusion). Given a left adjoint functor F ∈ C→ D and functors
G ∈ C→ C and H ∈ D→ D s.t.

F ◦G ' H ◦ F

then
F (µ(G)) ' µ(H)

Using

F ∈ C⇒ (C⇒ C)op

F (X) = ΛY.X ⇒ Y

we may obtain lemma 3 as a corollary (w.o. requiring that the functors involved
are continuous or cocontinuous) if we can show that F has a right adjoint. This
right adjoint can be written as

F# ∈ (C⇒ C)op → C
F#(G) = G→̇λX.X



This requires that there is an internal representation of G→̇λX.X which depends
on impredicative quantification as present in the Calculus of Constructions.

There is a very close connection between the construction sketched above
and the Haskell programs (section 1.1). The programs seem not to use impred-
icative quantification explicitly because this is hidden by polymorphic recursion.
However, if we attempt to present e.g. appBT using categorical combinators (e.g.
fold) there seems to be no way to avoid impredicative polymorphism (which
also has the consequence that this cannot be encoded in the current Haskell
type system).

This also raises the question whether explaining polymorphic recursion which
arises naturally when using nested types does in some natural cases require im-
predicative polymorphism. The specific case considered here shows that impred-
icativity can be avoided by using ω-completeness properties. It may be the case
that similar explanations can be found for all sensible applications of polymor-
phic recursion.

7 Further work

There is a certain asymmetry in our construction: we construct function types
of regular (inductive) types using nested (coinductive) types. It seems natural to
ask what happens if we look at nested inductive types in the domain. It seems
reasonable to look at functors definable in a simply typed language where type
constructors like × or µ are just basic constants. The construction presented here
can be generalized to this case (which we may call higher dimensional nested
types). We plan to present details of this in a forthcoming paper.

In the current form our result is not applicable to categories of constructive
functions like ω-Set. However, it seems likely that our result still holds when
moving to an appropriate internal notion of limits and colimits.

The categorical features used here, e.g. initial and terminal algebras but
no function types can be syntactically encoded in a calculus which for obvious
reasons does not deserve the name λ-calculus. We believe that this calculus
deserves further investigation because it represents the algorithms which can
be defined using only algebraic types. It would be interesting to determine the
precise proof-theoretic strength of this calculus which almost certainly exceeds
that of first order arithmetic.

References

[Ada74] J. Adamek. Free algebras and automata realizations in the language of
categories. Comment. Math. Univ. Carolinae, 15:589–602, 1974.

[AR99] T. Altenkirch and B. Reus. Monadic presentations of lambda terms
using generalized inductive types. In Computer Science Logic, 1999.

[BBvGvdW96] R. Backhouse, R. Bijsterveld, R. van Geldrop, and J. van der Woude.
Category theory as coherently constructive lattice theory. available
from http://www.cs.nott.ac.uk/~rcb/papers/papers.html, Decem-
ber 1996. Working Document.



[Bla00] P. Blampied. Structured recursion for non-uniform data-types. PhD
thesis, School of Computer Science and IT at the University of Not-
tingham, UK, 2000.

[BM98] R. Bird and L. Meertens. Nested datatypes. In J. Jeuring, editor,
Mathematics of Program Construction, number 1422 in LNCS, pages
52 – 67. Springer Verlag, 1998.

[CS92] J. R. B. Cockett and D. Spencer. Strong categorical datatypes I. In
R. A. G. Seely, editor, Proceedings Intl. Summer Category Theory Meet-
ing, Montréal, Québec, 23–30 June 1991, volume 13 of Canadian Math-
ematical Society Conf. Proceedings. American Mathematical Society,
1992.

[Hin00a] R. Hinze. Generalizing generalized tries. Journal of Functional Pro-
gramming, 2000.

[Hin00b] R. Hinze. Memo functions, polytypically! In Johan Jeuring, editor,
Proceedings of the Second Workshop on Generic Programming, WGP
2000, 2000.

[Jon98] G. Jones. Tabulation for type hackers. Available from
ftp://ftp.comlab.ox.ac.uk/, 1998.

[PS78] G. D. Plotkin and M. B. Smyth. The category-theoretic solution of
recursive domain equations. SIAM Journal on Computing, 11, 1978.


