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Do we need partiality?

The Totalitarian View

We do not need to talk about partial computations!
A non-terminating program has a bug. We need to talk about
non-terminating programs as much as we need to talk about programs
with syntax errors.
Hence, there is no need for domain theory either.
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The reformed totalitarian

There are situations where we need partiality.

For example if we want to implement (and partially verify) an
interpreter for the type theory we are working in.

What about the reals: all functions f : R→ Bool are constant. What
is the type of ≤ witnessing that this relation is semi-decidable.

We may want to model and reason about implementations of partial
languages.
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Partiality is an effect

Effects in functional programming can be encapsulated as monads
(following Moggi/Wadler).

E.g.

State S is the type of states.

MState A ≡ S → S × A

Error E is the type of errors.

MError A ≡ E + A

The corresponding Kleisli category represents effectful computations.

We can use these definitions to reason about effectful computations
and execute them at compile time.
See Beauty in the Beast, Haskell workshop 07, with W.Swierstra

Partiality should just be another effect monad.

In this sense Haskell is not pure.
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What is the partiality monad?

There are different notions of partiality:

Decidable partiality
MDecP A ≡ 1 + A

Propositional partiality

MPropP A ≡ ΣP : Prop.P → A

But we are looking for a different kind of partiality here.

We want to allow non-terminating computations and recursive
programs.
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Capretta’s monad
In [*] Capretta describes a coinductive definition of a monad to
capture general recursion.
Using a destructor we can define MDelay A

nextA : MDelay A→ {return : A}+ {step : MDelay A}
Using copatterns we can define:

now : A→ MDelay A

next (now a) ≡ return a

later : MDelay A→ MDelay A

next (later d) ≡ step d

Exercise: define bind
>>= : MDelay A→ (A→ MDelay B)→ MDelay B

Equality on MDelay A is strong bisimilarity.
I.e. MDelay A is the terminal coalgebra of A + .

[*] V. Capretta, General Recursion via Coinductive Types,LMCS 2005
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Too intensional

MDelay doesn’t yet capture what we want.

We can differentiate between a computation that terminates now or
in one step or in two steps etc . . .

Capretta defines a notion of weak bisimilarity on MDelay:
I First we inductively define ↓ : MDelay A→ A→ Prop

(terminates with):

next d = return a→ d ↓ a
next d = step d ′ → d ′ ↓ a→ d ↓ a

I We define weak bisimilarity ≈ : MDelay A→ MDelay A→ Prop

d ≈ d ′ ≡ ∀a : A.d ↓ a↔ d ′ ↓ a
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Partiality as a quotient
We can define MPq : Set→ Set using a quotient:
MPq A :≡ MDelay A/ ≈
We understand quotients as inductively defined:

[ ] : MDelay A→ MPq A

[ ]= : d ≈ d ′ → [d ] = [d ′]

The first constructor constructs elements, the 2nd equalities of MPq A.
To define a function f : MPq A→ B we need

g : MDelay A→ B

h : d ≈ d ′ → g d = g d ′

Using pattern matching we can now define

f [d ] :≡ g d

f [p]= :≡ h p

I am overloading notation and write ap f p (apply path) as f p where
ap f : x = y → f x = f y .

Thorsten Altenkirch (Nottingham) The Partiality Monad September 9, 2018 8 / 14



Is this a monad?

We would like to show:

1 MPq is a monad.

2 MPq A is an ω-CPO,

We (A.,Capretta, Uustalu) tried this in 2005 and failed. . .
The problem is that you need to commute quotients and coinductive (i.e.
infinitary) definitions and you need instances of the axiom of choice to do
this.
This is reminiscent of a similar problem with the Cauchy Reals: Without
(countable) choice we cannot show that the Cauchy Reals are Cauchy
complete.
This problem was adressed in HoTT by using a Higher Inductive Type to
define the Cauchy Reals (HoTT book, chapter 11.3).
Can we do something similar here?
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Using countable choice

In HoTT countable choice (ACω)can be expressed as

Πx : N.||P x || → ||Πx : N.P x ||

where P : N→ Prop and ||A|| is the propositional truncation of A.

Chapman, Uustalu and Niccolò showed in 2015 that assuming ACω

one can show that MPq is a monad.
Quotienting the Delay Monad by Weak Bisimilarity ICTAC 2015
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Defining MP as a Higher Inductive Type

MP A : Set

v : MP A→ MP A→ Prop

⊥ : MP A

η : A→ MP A⊔
: Πf :N→MP A(Πn:Nf (n) v f (n + 1))→ MP A

d v d ⊥ v d

⊔
(f , p) v d

Πn:Nf (n) v d

Πn:Nf (n) v d⊔
(f , p) v d

d v d ′ d ′ v d

d = d ′

A.,Danielsson,Kraus Partiality, Revisited, FOSSACS 2017
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This is a Quotient Inductive-Inductive Type (QIIT)

We omit constructors for set and prop truncation.

Since MP A is set truncated, we call this a quotient inductive type
(QIT) a special case of a HIT.

Indeed, since MP A and v are defined mutually it is a Quotient
Inductive-Inductive Type (QIIT).

The same applies to the definition of the Reals.
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The basic idea

MP A is the free ω-CPO over A.

Hence it is an ω-CPO (1) and it is a monad (2).

This is also reminiscent of the definition of the Cauchy Reals in the
HoTT book which defines the Reals as the Cauchy completion of the
rationals.

We can show that assuming ACω that the two definitions are
equivalent MP A = MPq A.

The essence here is that QITs (and HITs) define elements and
equality at the same time. This avoids many instance of AC.
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What next?

We can now represent and reason about partial computations and
general recursion in total Type Theory.

This is an effect, at runtime we can just run the potentially
non-terminating programs.

Who says that Type Theory is not Turing complete?

We can use QI(I)Ts to construct recursive types using ω-colimits.

With Frederik Forsberg, Ambrus Kaposi, Andras Kovac and Jakob
von Raumer we are working on the theory of QIITs.

Can we develop higher domain theory using higher directed type
theory making the relation between recursive values and recursive
types precise?
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