
Towards higher dimensional Type Theory

Thorsten Altenkirch and Thierry Coquand

School of Computer Science
University of Nottingham

April 8, 2011

Thorsten Altenkirch and Thierry Coquand (Nottingham) fita 11 April 8, 2011 1 / 11



Background

New axiom for Type Theory (Univalence)
inspired by Homotopy Theory
proposed by Vladimir Voevodsky
Interesting from a foundational point of view
new connection between topology and logic.
Should be explained from a purely type theoretic view
Connection with representation independence (abstraction)
relevant for Computer Science
Voevodsky formalized his approach in Coq
adapted to Agda and improved by Nisse

Thorsten Altenkirch and Thierry Coquand (Nottingham) fita 11 April 8, 2011 2 / 11



Equality of functions

What should be equality of functions?
All operations in Type Theory preserve extensional equality of
functions.
The only exception is intensional propositional equality.
We would like to define propositional equality as extensional
equality.

postulate
ext : (f g : A→ B)
→ ((a : A)→ f a ≡ g a)→ f ≡ g

Thorsten Altenkirch and Thierry Coquand (Nottingham) fita 11 April 8, 2011 3 / 11



Equality of types

What should be equality of types?
All operations of Type Theory preserve isomorphisms (or
bijections).
The only exception is intensional propositional equality.
Unlike Set Theory, e.g. {0,1} ' {1,2} but
{0,1} ∪ {0,1} 6' {0,1} ∪ {1,2}.
We would like to define propositional equality of types as
isomorphism.

Thorsten Altenkirch and Thierry Coquand (Nottingham) fita 11 April 8, 2011 4 / 11



UIP and isomorphism

Uniqueness of identity proofs (UIP)

uip : (a b : A) (p q : a ≡ b)→ p ≡ q

UIP doesn’t hold if we define equality of types as isomorphism.
E.g. there is more than one way to prove that Bool is isomorphic
to Bool .
If we want to use isomorphism as equality we cannot allow uip.
In Agda that can be achieved by using the new flag −noK
(experimental).

Thorsten Altenkirch and Thierry Coquand (Nottingham) fita 11 April 8, 2011 5 / 11



Dimensions of types (or h-levels)

A type is contractible if it contains precisely one element.

Contr A = Σ [a : A] ((a′ : A)→ a ≡ a′)

Contractible types have dimension 0.
A type has dimension n + 1, if its equality is n-dimensional.
The 1-dimensional types are the propositions
(any two proofs are equal).
The 2-dimensional types are the sets
(their equality is propositional).
The universe of small sets with isomorphism as equality is
3-dimensional.

Thorsten Altenkirch and Thierry Coquand (Nottingham) fita 11 April 8, 2011 6 / 11



Some results

Contractibility Contr A is of dimension 1 (propositional).
Similar, the predicate Dim n A (being n-dimensional) is also of
dimension 1 (propositional).
A→ Contr A is equivalent to A being propositional.
The product of contractible types is contractible.

((x : A)→ Contr (B x))→ Contr ((x : A)→ B x)

This is equivalent to functional extensionality.
In general all dimensions are closed under Π-types.

Thorsten Altenkirch and Thierry Coquand (Nottingham) fita 11 April 8, 2011 7 / 11



From bijection to weak equivalence
A function f : A→ B is a bijection if there is precisely one inverse
for any b : B.

bijective f = (b : B)→∃![a : A] f a ≡ b

bijective f is only a proposition, if B is a set.
We can fix this by demanding that the equality proof is unique too:

isWeakEquivalence f = (b : B)→ Contr (Σ [a : A] f a ≡ b)

Can be rewritten as:

isWeakEquivalence f = (b : B)→ Contr (f −1 b)

using

−1 : (f : A→ B) (b : B)→ Set
(f −1) b = Σ [a : A] (f a ≡ b)

Thorsten Altenkirch and Thierry Coquand (Nottingham) fita 11 April 8, 2011 8 / 11



Univalence

Two types are weakly equivalent A≈ B if there exists a weak
equivalence between them.
The Univalence axiom states that equality of sets is weak
equivalence.
Weak equivalence A≈ B is logically equivalent to isomorphism.
But it isn’t weakly equivalent to isomorphism (or isomorphic to it).
Weak equivalence (isomorphism) is stronger than logical
equivalence.
Surprisingly: Univalence implies functional extensionality (ext).
Isomorphic structures are equal (shown for one simple example
by Thierry and Nisse).

Thorsten Altenkirch and Thierry Coquand (Nottingham) fita 11 April 8, 2011 9 / 11



Type Theory with Univalence

We can add Univalence as a postulate.
This destroys canonicity
(e.g. there are non-standard natural numbers).
Can we justify the univalence axiom constructively? I.e. can we
give computation rules?
This is similar to the problem of elimination of functional
extensionality.
Idea: Exploit that all operations are closed under functional
extensionality and isomorphisms.
Additional complexity: we cannot assume UIP.
Also interpret (proof-relevant) quotients.

Thorsten Altenkirch and Thierry Coquand (Nottingham) fita 11 April 8, 2011 10 / 11



Summary

Type Theory without UIP
offers a more abstract view on sets and structures
reflects mathematical practice
(avoid dependendence on representation choices)
Also relevant for Computer Science
New ways of understanding this theory
comes from homotopy.
Does this help us?
Not clear yet how to give a computational interpretation
continuing work on elimination of extensionality
but it is much harder.

Thorsten Altenkirch and Thierry Coquand (Nottingham) fita 11 April 8, 2011 11 / 11


