
Naive Type Theory

Thorsten Altenkirch

Functional Programming Laboratory

School of Computer Science

Set theory

N set of natural numbers

3 2 N

3 + 4 = 7

8x.x 2 N ! x+ x = 2⇥ x

Type theory

N type of natural numbers

3 : N

3 + 4 ⌘ 7

⇧x : N.x+ x = 2⇥ x

What’s the difference ?

In Set Theory, elements are first

They are collected into sets

In Type Theory Types come first

Elements are associated with their types

a 2 A

a : A

is a proposition

is a judgement

8x.x 2 A ! x 2 B

not expressible in Type Theory

A ✓ B

A \B

A [B

A ! B

A⇥B

A+B

A ' B

{a, b} ' {c, d}

isomorphism / bijection

{a, b}+ {a} ' {c, d}+ {a}

{a, b} [{a} 6' {c, d} [{a}

Intensional vs
extensional

Operations like and are intensional.

Their behaviour depends on the intensional
properties of objects.

In contrast operations like , and are
extensional.

They behaviour is independent on the choice
of interpretation

[\

⇥ + !

In Intensional Type Theory all operations are
extensional.

In HoTT we go one step further:

Isomorphic types are equal 
(univalence principle)

What is a function?
f : A ! B

fa : A f a : B

Functions are a primitive concepts in Type
Theory

We use the language of - calculus

Functions are effective 
(a function that doesn’t function shouldn’t be
called a function)

�

Dependent functions
Fix now from construct

The normal function type is a special case of  
 -types 
 

a : A n : N
(a, a, . . . , a)| {z }

n times

: An

tup : ⇧n : N.An

tupn ⌘ (a, a, . . . , a)| {z }
n times

⇧
A ! B ⌘ ⇧� : A.B

Dependent pairs

A list is a tuple of arbitrary size.

The normal product type is a special case of  
 - types

ListA ⌘ ⌃n : N.An

A⇥B ⌘ ⌃� : A.B

⌃

Disjoint union

We can define using -types

injections are definable

⌃+

A+B ⌘ ⌃b : Bool.

⇢
A if b ⌘ true

B if b ⌘ false

inl : A ! A+B

inl a ⌘ (true, a)

An alternative definition
of products

We can use the same idea to define products

This reflects the fact that product can be
defined introduction-based or elimination-
based.

A⇥B ⌘ ⇧b : Bool.

⇢
A if b ⌘ true

B if b ⌘ false

Concepts in Type Theory
-types  

-types

inductive types

⇧x : A.B(x)

A ! B

⌃x : A.B(x)

A⇥B

A⇥B

A+B

⇧

⌃

N
Bool

Propositions as types
Set Theory uses classical predicate logic.

A proposition is interpreted as saying what is
true.

In Type Theory we avoid the idea of truth
and define what is evidence for a proposition.

This is achieved by assigning the type of
evidence to a proposition.

We accept a proposition if there is evidence
for it.

Proposition as types

A) BA ! B
A ^BA⇥B
A _BA+B
8x : A.B(x)⇧x : A.B(x)

9x : A.B(x)⌃x : A.B(x)

implication

conjunction

disjunction

universal
quantification

existential
quantification

Examples

  
 
are tautologies.

classically

type-theoretically

A ^ (B _ C)) A ^B _A ^ C
(9x : A.B x _ C x)) (9x : A.B x) _ (9x : A.C x)

classically
A B C A ^ (B _ C) A ^B _A ^ C · · ·) . . .

false false false false false true
false false true false false true
false true false false false true
false true true false false true
true false false false false true
true false true true true true
true true false true true true
true true true true true true

A ^ (B _ C)) A ^B _A ^ C

type-theoretically
A ^ (B _ C)) A ^B _A ^ C

f : A⇥ (B + C) ! A⇥B +A⇥ C

f (a, (true, b)) ⌘ (true, (a, b))

f (a, (false, c)) ⌘ (false, (a, c))

classically

we need infinite truth tables (1st order
structures)

We can argue on the meta level reflecting
the tautology.

(9x : A.B x _ C x)) (9x : A.B x) _ (9x : A.C x)

type-theoretically
(9x : A.B x _ C x)) (9x : A.B x) _ (9x : A.C x)

g : (⌃x : A.B x+ C x) ! (⌃x : A.B x) + (⌃x : A.C x)

g (a, (true, b)) ⌘ (true, (a, b))

g (a, (false, c)) ⌘ (false, (a, c))

Classical principles

Define

There is no evidence for:

excluded middle

indirect proof

However there is evidence for 

¬A ⌘ A ! ;

A _ ¬A

¬¬A ! A

¬¬(A _ ¬A)

The axiom of choice?

R ✓ A⇥B

(8x : A.9y : B.R (x, y))

! (9f : A ! B.8x : A.R(x, f(x)))

AC in Type Theory
R : A⇥B ! Type

ac : (⇧x : A.⌃y : B.R (x, y))

! (⌃f : A ! B.8x : A.R(x, f(x)))

ac f ⌘ (�x.⇡1 (f x),�x.⇡2 (f x))

⇡1 : (⌃x : A.B x) ! A

⇡1(a, b) ⌘ a

⇡2 : ⇧y : (⌃x : A.B x).B (⇡1 y)

⇡2 (a, b) ⌘ b

What happened?

AC is usually considered classical.

But now we were able to prove it in Type
Theory?

Types unlike propositions can carry
information.

What really is a proposition in Type Theory?

Propositions in

Type Theory

We call a Type a proposition if it has at most
one element.

Most logical operators are closed under Prop,
e.g. ,

But and are not closed under Prop.

Prop ⌘ ⌃A : Type.⇧x, y : A.x = y

A : Type B : A ! Prop

⇧x : A.B x : Prop

+ ⌃

Propositional truncation

We introduce an operation  
 ,given

This is a sort of a black box.  

||A|| : Prop A : Type

⌘ : A ! ||A||

Propositions as types (2)

A) BA ! B
A ^BA⇥B
A _B||A+B||
8x : A.B(x)⇧x : A.B(x)

9x : A.B(x)||⌃x : A.B x||

implication

conjunction

disjunction

universal
quantification

existential
quantification

AC in Type Theory (2)

This type is not inhabited.

Indeed it implies excluded middle  
(Diaconescu’s construction)

(⇧x : A.||⌃y : B.R (x, y)||)
! ||⌃f : A ! B.8x : A.R(x, f(x))||

R : A⇥B ! Prop

Equality types

Given we introduce the type  
of reasons that a is equal to b.

We always have

In Intensional Type Theory this was viewed
as an inductive definition.

a, b : A a = b

refl : a = a

Is equality propositional?

Is ?

This was settled to the negative by Hofmann
and Streicher using the Groupoid model.

In HoTT univalence identifies equality of sets
with isomophism.

Hence there are 2 elements of

a = b : Prop

Bool = Bool

The Hierarchy of Types

Contr

⌃x : A.⇧y : A.x = y

Prop

⇧x, y : A.isContr (x = y)

Set ⇧x, y : A.isProp (x = y)

Gpd ⇧x, y : A.isSet (x = y)

h-level truncation
level

0 -2

1 -1

2 0

3 1

… … … …

The structure of
equality types

Contr

Prop

Set
Gpd

trivial

trivial

Equivalence
relation

Groupoid

… …

Equality in HoTT

Types in HoTT are viewed as weak  
 -Groupoids

Equality types expose this structure.

This allows us to have a very extensional
equality.

It also enables the introduction of Higher
Inductive Types (HITs)

!

Concepts in Type Theory
-types  

-types

inductive types

Equality types

Universes

⇧x : A.B(x)

A ! B

⌃x : A.B(x)

A⇥B

A+B

⇧

⌃

N
Bool

A) B

8x : A.B x

A ^B
A _B

9x : A.B x

||A||

a = b

Typei : Typei+1

Conclusions

Modern Type Theory is constructive in two
ways

Elements of types are constructed 
(not collected as for sets) 
giving rise to univalence

Truth is replaced by Evidence 
giving rise to propositions as types

