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Set theory

N set of natural numbers

3 2 N

3 + 4 = 7

8x.x 2 N ! x+ x = 2⇥ x



Type theory

N type of natural numbers

3 : N

3 + 4 ⌘ 7

⇧x : N.x+ x = 2⇥ x



What’s the difference ?



In Set Theory, elements are first


They are collected into sets


In Type Theory Types come first


Elements are associated with their types



a 2 A

a : A

is a proposition

is a judgement

8x.x 2 A ! x 2 B

not expressible in Type Theory



A ✓ B

A \B

A [B

A ! B

A⇥B

A+B



A ' B

{a, b} ' {c, d}

isomorphism / bijection

{a, b}+ {a} ' {c, d}+ {a}

{a, b} [ {a} 6' {c, d} [ {a}



Intensional vs 
extensional

Operations like    and   are intensional.


Their behaviour depends on the intensional 
properties of objects.


In contrast operations like   ,   and   are 
extensional.


They behaviour is independent on the choice 
of interpretation

[ \

⇥ + !



In Intensional Type Theory all operations are 
extensional.


In HoTT we go one step further: 


Isomorphic types are equal 
(univalence principle)



What is a function?
f : A ! B

fa : A f a : B



Functions are a primitive concepts in Type 
Theory


We use the language of   - calculus


Functions are effective 
(a function that doesn’t function shouldn’t be 
called a function)

�



Dependent functions
Fix         now from       construct


The normal function type is a special case of       
   -types 
 

a : A n : N
(a, a, . . . , a)| {z }

n times

: An

tup : ⇧n : N.An

tupn ⌘ (a, a, . . . , a)| {z }
n times

⇧
A ! B ⌘ ⇧� : A.B



Dependent pairs

A list is a tuple of arbitrary size.


The normal product type is a special case of    
   - types

ListA ⌘ ⌃n : N.An

A⇥B ⌘ ⌃� : A.B

⌃



Disjoint union

We can define   using   -types


injections are definable

⌃+

A+B ⌘ ⌃b : Bool.

⇢
A if b ⌘ true

B if b ⌘ false

inl : A ! A+B

inl a ⌘ (true, a)



An alternative definition 
of products

We can use the same idea to define products


This reflects the fact that product can be 
defined introduction-based or elimination-
based.

A⇥B ⌘ ⇧b : Bool.

⇢
A if b ⌘ true

B if b ⌘ false



Concepts in Type Theory
-types  

-types 

inductive types

⇧x : A.B(x)

A ! B

⌃x : A.B(x)

A⇥B

A⇥B

A+B

⇧

⌃

N
Bool



Propositions as types
Set Theory uses classical predicate logic.


A proposition is interpreted as saying what is 
true.


In Type Theory we avoid the idea of truth 
and define what is evidence for a proposition.


This is achieved by assigning the type of 
evidence to a proposition.


We accept a proposition if there is evidence 
for it.




Proposition as types

A ) BA ! B
A ^BA⇥B
A _BA+B
8x : A.B(x)⇧x : A.B(x)

9x : A.B(x)⌃x : A.B(x)

implication

conjunction

disjunction

universal 
quantification

existential 
quantification



Examples

               
 
are tautologies.


classically


type-theoretically

A ^ (B _ C) ) A ^B _A ^ C
(9x : A.B x _ C x) ) (9x : A.B x) _ (9x : A.C x)



classically
A B C A ^ (B _ C) A ^B _A ^ C · · · ) . . .

false false false false false true
false false true false false true
false true false false false true
false true true false false true
true false false false false true
true false true true true true
true true false true true true
true true true true true true

A ^ (B _ C) ) A ^B _A ^ C



type-theoretically
A ^ (B _ C) ) A ^B _A ^ C

f : A⇥ (B + C) ! A⇥B +A⇥ C

f (a, (true, b)) ⌘ (true, (a, b))

f (a, (false, c)) ⌘ (false, (a, c))



classically

we need infinite truth tables (1st order 
structures)


We can argue on the meta level reflecting 
the tautology.

(9x : A.B x _ C x) ) (9x : A.B x) _ (9x : A.C x)



type-theoretically
(9x : A.B x _ C x) ) (9x : A.B x) _ (9x : A.C x)

g : (⌃x : A.B x+ C x) ! (⌃x : A.B x) + (⌃x : A.C x)

g (a, (true, b)) ⌘ (true, (a, b))

g (a, (false, c)) ⌘ (false, (a, c))



Classical principles

Define 


There is no evidence for:


excluded middle


indirect proof


However there is evidence for 

¬A ⌘ A ! ;

A _ ¬A

¬¬A ! A

¬¬(A _ ¬A)



The axiom of choice?

R ✓ A⇥B

(8x : A.9y : B.R (x, y))

! (9f : A ! B.8x : A.R(x, f(x)))



AC in Type Theory
R : A⇥B ! Type

ac : (⇧x : A.⌃y : B.R (x, y))

! (⌃f : A ! B.8x : A.R(x, f(x)))

ac f ⌘ (�x.⇡1 (f x),�x.⇡2 (f x))

⇡1 : (⌃x : A.B x) ! A

⇡1(a, b) ⌘ a

⇡2 : ⇧y : (⌃x : A.B x).B (⇡1 y)

⇡2 (a, b) ⌘ b



What happened?

AC is usually considered classical.


But now we were able to prove it in Type 
Theory?


Types unlike propositions can carry 
information.


What really is a proposition in Type Theory?



Propositions in 

Type Theory

We call a Type a proposition if it has at most 
one element.


Most logical operators are closed under Prop, 
e.g.              , 


But    and   are not closed under Prop.

Prop ⌘ ⌃A : Type.⇧x, y : A.x = y

A : Type B : A ! Prop

⇧x : A.B x : Prop

+ ⌃



Propositional truncation

We introduce an operation  
                ,given


This is a sort of a black box.  

||A|| : Prop A : Type

⌘ : A ! ||A||



Propositions as types (2)

A ) BA ! B
A ^BA⇥B
A _B||A+B||
8x : A.B(x)⇧x : A.B(x)

9x : A.B(x)||⌃x : A.B x||

implication

conjunction

disjunction

universal 
quantification

existential 
quantification



AC in Type Theory (2)

This type is not inhabited.


Indeed it implies excluded middle  
(Diaconescu’s construction)

(⇧x : A.||⌃y : B.R (x, y)||)
! ||⌃f : A ! B.8x : A.R(x, f(x))||

R : A⇥B ! Prop



Equality types

Given          we introduce the type  
of reasons that a is equal to b.


We always have


In Intensional Type Theory this was viewed 
as an inductive definition.

a, b : A a = b

refl : a = a



Is equality propositional?

Is                 ?


This was settled to the negative by Hofmann 
and Streicher using the Groupoid model.


In HoTT univalence identifies equality of sets 
with isomophism. 


Hence there are 2 elements of 

a = b : Prop

Bool = Bool



The Hierarchy of Types

Contr

⌃x : A.⇧y : A.x = y

Prop

⇧x, y : A.isContr (x = y)

Set ⇧x, y : A.isProp (x = y)

Gpd ⇧x, y : A.isSet (x = y)

h-level truncation 
level

0 -2

1 -1

2 0

3 1

… … … …



The structure of 
equality types

Contr

Prop

Set
Gpd

trivial

trivial

Equivalence 
relation

Groupoid

… …



Equality in HoTT

Types in HoTT are viewed as weak    
   -Groupoids


Equality types expose this structure.


This allows us to have a very extensional 
equality.


It also enables the introduction of Higher 
Inductive Types (HITs)

!



Concepts in Type Theory
-types  

-types 

inductive types

Equality types 

Universes

⇧x : A.B(x)

A ! B

⌃x : A.B(x)

A⇥B

A+B

⇧

⌃

N
Bool

A ) B

8x : A.B x

A ^B
A _B

9x : A.B x

||A||

a = b

Typei : Typei+1



Conclusions

Modern Type Theory is constructive in two 
ways


Elements of types are constructed 
(not collected as for sets) 
giving rise to univalence


Truth is replaced by Evidence 
giving rise to propositions as types




