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You guys are both my withesses... He insinuated that

ZFC set theory is superior to Type Theory!




Set theory

N set of natural numbers

3 &N
G P ==

Ve.r € N x4 =2 X ¢



Type theory

N type of natural numbers
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@ In Set Theory, elements are first
@ They are collected into sets
@ In Type Theory Types come first

@ Elements are associated with their types



a €A is a proposition

a:A IS a judgement

Vr.x '€ A - g =85

not expressible in Type Theory






A~ B isomorphism / bijection
{a,b} ~ {c,d}
{a,b} U{a} # {c,d} U {a}

1a,by +{a} =~ {c,d} +{aj}



Intensional vs
extensional

@ Operations like U and Nare intensional.

@ Their behaviour depends on the infensional
properties of objects.

@ In contrast operations like x , + and —are
extensional.

@ They behaviour is independent on the choice
of interpretation



@ In Intensional Type Theory all operations are
extensional.

@ In HoTT we go one step further:

@ Isomorphic types are equal
(univalence principle)



What is a function?

f:A— B




@ Functions are a primitive concepts in Type
Theory

® We use the language of ) - calculus

@ Functions are effective
(a function that doesnt function shouldnt be
called a function)



Dependent functions

@ Fix a: A now from n : N construct

(asai. oty A"
g
n times
tup : IIn : N.A™
tupn = (a,a,...,a)
PSSR L
n times
@ The normal function type is a special case of

IT-types
A— B=1I-:A.B



Dependent pairs

@ A list is a tuple of arbitrary size.

List A=>n:N.A"

@ The normal product type is a special case of
> - types

A X Bi=DF— %



Disjoint union

® We can define +using X -types

A if b = true

A+BzEb:Bool.{ SLATER.

@ injections are definable

I =

inla = (true, a)



An alternative definition
of products

® We can use the same idea to define products

A 1if b= true

AszHb:Bool.{ P O

@ This reflects the fact that product can be
defined introduction-based or elimination-
based.



Concepts in Type Theory

A— B
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Propositions as types

@ Set Theory uses classical predicate logic.

@ A proposition iIs interpreted as saying what is
true.

@ In Type Theory we avoid the idea of truth
and define what is evidence for a proposition.

@ This is achieved by assigning the type of
evidence to a proposition.

® We accept a proposition if there is evidence
for it.



Proposition as types

implication A i B A S B

conjunction A /\ B A X B

‘ disjunction A \/ B A —|— B

uhiversal Y - AB($)HZU : AB(CE)

- quantification |

existential =

quantification

S—

v: A.B(x)Sx : A.B(x)



Examples

@dAN(BVC)=AANBVANAC
(JeiABaxvVCx)=>(deiA.Be) e : A.Cx)

are tautologies.
@ classically

@ type-theoreftically



ANBVC)=AABVAAC

classically

A B C |AN(BVC)| AANBVAAC .
talse | false | false talse talse true
talse | false | true talse talse true
false | true | false talse talse true
false | true | true talse false true
true | false | false talse talse true
true | false | true true true true
true | true | false true true true
true | true | true true true true




ANBVC)=AABVAAC

type-theoretically

fi:AX(B4+(C)—>AxB+AxC(C

f (a, (true, b)) = (true, (a, b))
f (a, (false, ¢)) = (false, (a, c))



(Jdz + A.BaVvCay= (dr . A alde A.C 7

classically

@ we need infinite truth tables (1st order
structures)

® We can argue on the meta level reflecting
the tautology.



(Jdz + A.BaVvCay= (dr . A alde A.C 7

type-theoretically

g:Xx:ABx+Czx)— Xx:ABzx)+ (Xx: A.Cx)



Classical principles

@ Define " A=A —(
@ There is no evidence for:
@ excluded middle AV —-A
@ indirect proof A — A

@ However there is evidence for
—=(AV —A)



The axiom of choice?

RCA D

(Vx: A3dy: B.R(z,y))
— (df : A— BVx: A.R(z, f(x)))



AC In Type Theory

R:Ax B — Type

acs (Tz - AYy: B.R(zmn))
A B Y . AREEES (1))

ac f =(Az.m1 (f &), Az.m2 (f 7))

m:(Xx: ABx) > A

m(a,b) = a

o Iy : (Xz: A.Bx).B(m y)
7o (a,b) = b



What happened?

@ AC is usually considered classical.

@ But now we were able to prove it in Type
Theory?

@ Types unlike propositions can carry
information.

@ What really is a proposition in Type Theory?



Propositions in
Type Theory

@ We call a Type a proposition if it has at most
one element.

Prop = XA : Typellx,y : Ax =y

® Most logical operators are closed under Prop,
eg. A: Type , B: A— Prop

IIx : A.Bx : Prop

@ But + and X are not closed under Prop.



Propositional truncation

® We introduce an operation
|Al] : Prop ,given A : Type

n:A—||A]

@ This is a sort of a black box.



Propositions as types (2)

e,mpii,aa&wm A i B A % B
con junction A /\ B A >< B
dis junction A \/ B ‘ |A B‘ ‘

universal /oy A B()[Tx : A.B()

- quantification |

existential H widibitailisiae A. B x|

quantification

— = -




AC in Type Theory (2)

R:AXx B — Prop

Iz : A|[Sy : BR(z,9)])
— ||Xf: A— BNVx: A.R(x, f(x))|

o This type is not inhabited.

@ Indeed it implies excluded middle
(Diaconescus construction)



Equality types

@ Given a,b: Awe introduce the type a =1
of reasons that a is equal to b.

@ We always have refl : a =a

@ In Intensional Type Theory this was viewed
as an inductive definition.



Is equality propositional?

@ Is a=0b:Prop ?

@ This was settled to the negative by Hofmann
and Streicher using the Groupoid model.

@ In HoTT univalence identifies equality of sets
with isomophism.

@ Hence there are 2 elements of Bool = Bool



The Hierarchy of Types

he-level | Eruncation
level

o) -2 COnter:A.Hy:A.x:y

1 -1 P r() p [lz,y : A.isContr (z = y)

9 | lo) S et [lx,y : A.isProp (z = y)
2 | 1 G. p d [Iz,y : A.isSet (x = y)




The structure of
equality types

C O nt r Erivial

Pr()p B advs

S Equ&v&t@we
et relation

G- p d Groufooid !




Equality in HoTT

@ Types in HoTT are viewed as weak
w -Groupoids

@ Equality types expose this structure.

@ This allows us to have a very extensional
equality.

@ It also enables the introduction of Higher
Inductive Types (HITs)



Concepts in Type Theory

Lo A—=3Bs AE'EB
b o e b AgeE
~kupe
JP A+B AV B
M. ABer) e A.Bax
induckive Evges N Bool HAH
& Equ&ii&v bjp&s

Universes Type,; : TypeHl



Conclusions

® Modern Type Theory is constructive in two
ways

@ Elements of types are constructed
(not collected as for sets)
giving rise to univalence

@ Truth is replaced by Evidence
giving rise to propositions as types






