Naive Type Theory

Thorsten Altenkirch
Functional Programming Laboratory
School of Computer Science

You guys are both my withesses... He insinuated that

ZFC set theory is superior to Type Theory!

Set theory

N set of natural numbers

3 &N
G P ==

Ve.r € N x4 =2 X ¢

Type theory

N type of natural numbers
3: N
3 A=

Ilz : N.ox 0 =35 &

i

Vg -y
’

e PILS o |

i ":-t’i 1,..‘}

-

Shans & oo
-
i

V.-.. e
on S M a3 L-P..@Ju.lluldu

A T e

.
e .

@ In Set Theory, elements are first
@ They are collected into sets
@ In Type Theory Types come first

@ Elements are associated with their types

a €A is a proposition

a:A IS a judgement

Vr.x '€ A - g =85

not expressible in Type Theory

A~ B isomorphism / bijection
{a,b} ~ {c,d}
{a,b} U{a} # {c,d} U {a}

1a,by +{a} =~ {c,d} +{aj}

Intensional vs
extensional

@ Operations like U and Nare intensional.

@ Their behaviour depends on the infensional
properties of objects.

@ In contrast operations like x , + and —are
extensional.

@ They behaviour is independent on the choice
of interpretation

@ In Intensional Type Theory all operations are
extensional.

@ In HoTT we go one step further:

@ Isomorphic types are equal
(univalence principle)

What is a function?

f:A— B

@ Functions are a primitive concepts in Type
Theory

® We use the language of) - calculus

@ Functions are effective
(a function that doesnt function shouldnt be
called a function)

Dependent functions

@ Fix a: A now from n : N construct

(asai. oty A"
g
n times
tup : IIn : N.A™
tupn = (a,a,...,a)
PSSR L
n times
@ The normal function type is a special case of

IT-types
A— B=1I-:A.B

Dependent pairs

@ A list is a tuple of arbitrary size.

List A=>n:N.A"

@ The normal product type is a special case of
> - types

A X Bi=DF— %

Disjoint union

® We can define +using X -types

A if b = true

A+BzEb:Bool.{ SLATER.

@ injections are definable

I =

inla = (true, a)

An alternative definition
of products

® We can use the same idea to define products

A 1if b= true

AszHb:Bool.{ P O

@ This reflects the fact that product can be
defined introduction-based or elimination-
based.

Concepts in Type Theory

A— B
H*@jtﬂes
[Iz : A.B(x) AX DB
2. -types ;s
Yx : A.B(x) G
I\

inductive types | Bot

Propositions as types

@ Set Theory uses classical predicate logic.

@ A proposition iIs interpreted as saying what is
true.

@ In Type Theory we avoid the idea of truth
and define what is evidence for a proposition.

@ This is achieved by assigning the type of
evidence to a proposition.

® We accept a proposition if there is evidence
for it.

Proposition as types

implication A i B A S B

conjunction A /\ B A X B

‘ disjunction A \/ B A —|— B

uhiversal Y - AB($)HZU : AB(CE)

- quantification |

existential =

quantification

S—

v: A.B(x)Sx : A.B(x)

Examples

@dAN(BVC)=AANBVANAC
(JeiABaxvVCx)=>(deiA.Be) e : A.Cx)

are tautologies.
@ classically

@ type-theoreftically

ANBVC)=AABVAAC

classically

A B C |AN(BVC)| AANBVAAC .
talse | false | false talse talse true
talse | false | true talse talse true
false | true | false talse talse true
false | true | true talse false true
true | false | false talse talse true
true | false | true true true true
true | true | false true true true
true | true | true true true true

ANBVC)=AABVAAC

type-theoretically

fi:AX(B4+(C)—>AxB+AxC(C

f (a, (true, b)) = (true, (a, b))
f (a, (false, ¢)) = (false, (a, c))

(Jdz + A.BaVvCay= (dr . A alde A.C 7

classically

@ we need infinite truth tables (1st order
structures)

® We can argue on the meta level reflecting
the tautology.

(Jdz + A.BaVvCay= (dr . A alde A.C 7

type-theoretically

g:Xx:ABx+Czx)— Xx:ABzx)+ (Xx: A.Cx)

Classical principles

@ Define " A=A —(
@ There is no evidence for:
@ excluded middle AV —-A
@ indirect proof A — A

@ However there is evidence for
—=(AV —A)

The axiom of choice?

RCA D

(Vx: A3dy: B.R(z,y))
— (df : A— BVx: A.R(z, f(x)))

AC In Type Theory

R:Ax B — Type

acs (Tz - AYy: B.R(zmn))
A B Y . AREEES (1))

ac f =(Az.m1 (f &), Az.m2 (f 7))

m:(Xx: ABx) > A

m(a,b) = a

o Iy : (Xz: A.Bx).B(m y)
7o (a,b) = b

What happened?

@ AC is usually considered classical.

@ But now we were able to prove it in Type
Theory?

@ Types unlike propositions can carry
information.

@ What really is a proposition in Type Theory?

Propositions in
Type Theory

@ We call a Type a proposition if it has at most
one element.

Prop = XA : Typellx,y : Ax =y

® Most logical operators are closed under Prop,
eg. A: Type , B: A— Prop

IIx : A.Bx : Prop

@ But + and X are not closed under Prop.

Propositional truncation

® We introduce an operation
|Al] : Prop ,given A : Type

n:A—||A]

@ This is a sort of a black box.

Propositions as types (2)

e,mpii,aa&wm A i B A % B
con junction A /\ B A >< B
dis junction A \/ B ‘ |A B‘ ‘

universal /oy A B()[Tx : A.B()

- quantification |

existential H widibitailisiae A. B x|

quantification

— = -

AC in Type Theory (2)

R:AXx B — Prop

Iz : A|[Sy : BR(z,9)])
— ||Xf: A— BNVx: A.R(x, f(x))|

o This type is not inhabited.

@ Indeed it implies excluded middle
(Diaconescus construction)

Equality types

@ Given a,b: Awe introduce the type a =1
of reasons that a is equal to b.

@ We always have refl : a =a

@ In Intensional Type Theory this was viewed
as an inductive definition.

Is equality propositional?

@ Is a=0b:Prop ?

@ This was settled to the negative by Hofmann
and Streicher using the Groupoid model.

@ In HoTT univalence identifies equality of sets
with isomophism.

@ Hence there are 2 elements of Bool = Bool

The Hierarchy of Types

he-level | Eruncation
level

o) -2 COnter:A.Hy:A.x:y

1 -1 P r() p [lz,y : A.isContr (z = y)

9 | lo) S et [lx,y : A.isProp (z = y)
2 | 1 G. p d [Iz,y : A.isSet (x = y)

The structure of
equality types

C O nt r Erivial

Pr()p B advs

S Equ&v&t@we
et relation

G- p d Groufooid !

Equality in HoTT

@ Types in HoTT are viewed as weak
w -Groupoids

@ Equality types expose this structure.

@ This allows us to have a very extensional
equality.

@ It also enables the introduction of Higher
Inductive Types (HITs)

Concepts in Type Theory

Lo A—=3Bs AE'EB
b o e b AgeE
~kupe
JP A+B AV B
M. ABer) e A.Bax
induckive Evges N Bool HAH
& Equ&ii&v bjp&s

Universes Type,; : TypeHl

Conclusions

® Modern Type Theory is constructive in two
ways

@ Elements of types are constructed
(not collected as for sets)
giving rise to univalence

@ Truth is replaced by Evidence
giving rise to propositions as types

