DUMMIES

Thorsten Altenkirch
Functional Programming Laboratory Nottingham School of Computer Science

- Email discussion with David McAllester
- Why do we believe that univalence is sound?
- Doesn't understand the simplicial set model.

The Simplicial Model of Univalent Foundations
Chis Kapulkin, Peter Lefanu Lumsdaine, Vadimi Voevodsky
riggered by his morphoid theory, comments on classical logic.
Why don't you use HoTT?
Other alternatives: cubical - but not easy to explain univalence.
However: I realized that there is an intuitive explanation for a limited form of univalence.

Groupoids!

July 3, 2015, Friday TLCA Invited Talk (chair: Peter Dybjer) 9:00: Martin Hofmann. The Groupoid Interpretation of Type Theory, a Personal Retrospective

This is a trivial way to construct a univalent universe of sets.
Suggested to Martin to talk about groupoids at TLCA.

- Groupoids : univalent universe of sets
- Setoids : univalent universe of propositions
- Can we do 2-groupoids?
- This gets complicated!

This gives rise to a univalent universe of propositions in Setoids
Can we move up step by step?
2-groupoids already look very hard.
Better check this on a computer, which gets us to another talk.

Type Theory eats itself without indigestion joint work with Ambrus Kaposi

Thorsten Altenkirch
Functional Programming Laboratory
School of Computer Science

Type Theory in Type Theory?

Previous work by Chapman and Danielsson.
Looking for a more canonical and concise approach.
Main motivation for me verified metatheory.
Template programming: extend your programming language by new constructs. Can be applied to Type Theory.
Paper by Jaber,Tabareau \& Sozeau demonstrates this idea on presheaf models.
Eg add principles of guarded type theory.

```
data Ty : Set where
    1 : Ty
    _#_ : Ty }->\textrm{Ty}->\textrm{Ty
data Con : Set where
    - : Con
    _,_ : Con }->\textrm{Ty}->\mathrm{ Con
data Var : Con }->\textrm{Ty}->\mathrm{ Set where
    zero : Var ( }\Gamma,\sigma) 
    suc:Var \Gamma \sigma G Var (\Gamma , \tau) \sigma
data Tm : Con }->\textrm{Ty}->\mathrm{ Set where
    var : Var 「 \sigma -> Tm 「 \sigma
    _$_ : Tm 「 (\sigma = \tau) ->Tm 「 \sigma T Tm 「 \tau
    \lambda : Tm (\Gamma,\sigma) T -> Tm \Gamma (\sigma=> T)
```


Simply Typed λ－calculus

STL is easy．Just to demonstrate the idea that we restrict ourselves to typed objects．
Moving to dependent types much harder－so far．

OMITTED

```
- Substitution
_[_]: Tm「 \sigma Tms 「 \Delta Tm「 「 \sigma
- \beta n - Equality
data _~_ : Tm 「 \sigma -> Tm 「 \sigma -> Set
- Terms as quotient
Tm 「 \sigma / ~
```


Dependent Types

```
data Con : Set
data Ty : Con }->\mathrm{ Set
data Tm : (Г : Con) -> Ty 「 -> Set
data Tms : Con }->\mathrm{ Con }->\mathrm{ Set
```


Induction-Induction

Even worse: constructor types mention other constructors.
Inductive - Inductive types.
add one constructor at a time. Use dialgebras.
Understand this better now.

Coerce

Dependent Types II

```
data Con : Set
data Ty : Con }->\mathrm{ Set
data Tm : (\Gamma : Con) }->\mathrm{ Ty 「 }->\mathrm{ Set
data Tms : Con }->\mathrm{ Con }->\mathrm{ Set
data _~Con_ : Con }->\mathrm{ Con }->\mathrm{ Set
data _~Ty_ : Ty \Gamma }->\mathrm{ Ty 「 }->\mathrm{ Set
data _~Tm_ : Tm 「 A -> Tm 「 A }->\mathrm{ Set
data _~Tms_ : Tms 「 \Delta -> Tms 「 \Delta -> Set
```


Boilerplate

- ~s are equivalence relations
- constructors are congruences
- Ty, Tm, Tms are families of setoids

But it is much worse. We need to say that all families are functorial wrt all their indices.
Can't see the content of too much boilerplate.
Maybe we can automatically generate the boilerplate. But better..

I was told not to mention housewives in my talk.
But I couldn't help it.

Higher Inductive Types (HITs)
 to the rescue

data S^{1} : Set where
base : S¹
loop : base \equiv base

- HITs which are sets can be useful.
- Quotient Inductive Types (QITs)
- Examples in the HoTT book:
- Cauchy reals (11.3)
- Cumulative hierarchy of sets (10.5)

The infinite tree example

data $T_{0}:$ Set where
leaf : T_{0}
node $:\left(\mathbb{N} \rightarrow T_{0}\right) \rightarrow T_{0}$


```
    node : (\forall {n} -> f n ~ g n) -> node f ~ node g
    perm : isIso f }->\mathrm{ node g ~ node (g & f)
```

 \(T=T_{0} / \sim_{-}\)
 Define !
nodeT : $(\mathbb{N} \rightarrow T) \rightarrow T$
$[$ node $f] \equiv \operatorname{nodeT}(\lambda i \rightarrow[f i j)$

You can lift the constructors to finite trees by sequencing the eliminator.
But there seems to be no general way to do this for infinite trees.
The problem boils down to comute function types and equivalence classes. This corresponds to instances of the axiom of choice (not provable in HoTT)

Infinite trees as a QIT

```
data T : Set where
    leaf : T
    node : (\mathbb{N}->\textrm{T})->\textrm{T}
    perm : isIso f -> node g \equiv node (g o f)
    isSet : {e0 e1 : u \equivv} -> e0 \equivel
```

Using HITs there is an easy way out.
Here also force this to be a set. Omitted in subsequent examples.

Dependent types as a QIIT

```
data Con where
    _'- : (\Gamma : Con) }->\mathrm{ Ty }\Gamma->\mathrm{ Con
data Ty where
    _[_]T : Ty \Delta -> Tms \Gamma }\Delta->\mathrm{ Ty }
    U}\mp@subsup{}{}{-}: : Ty 
    El : (A : Tm \Gamma U) -> Ty \Gamma
    \Pi: (A : Ty \Gamma)(B : Ty (\Gamma , A)) -> Ty \Gamma
data Tms where
    \varepsilon, ! : (\delta: Tms \Gamma | ) -> Tm \Gamma (A [ | ]T) -> Tms \Gamma (\Delta, A)
    -'d
    0 . Tms }\Delta\Sigma->Tms \Gamma \triangle Tms \nabla \Sigma
    \mp@subsup{\Pi}{1}{}}\mp@subsup{}{-}{-}:\operatorname{Tms}\Gamma(\Delta,A)->\operatorname{Tms }\Gamma
    data Tm where
```



```
    \Pi}\mp@subsup{|}{2}{}:(\delta:\operatorname{Tms}\Gamma(\Delta,A))->\operatorname{Tm}\Gamma(A[\mp@subsup{\Pi}{1}{}\delta]T
    app: Tm \Gamma (\Pi A B) }->\textrm{Tm}(\Gamma,A) 
    lam: Tm (\Gamma,A) B -> Tm \Gamma (\PiA B)
```

idl : id $\circ \delta \equiv \delta$
ass : $\delta \circ 1 \mathrm{l} \equiv \delta$
$\therefore \quad:(\delta, a) \circ \sigma \equiv(\delta \circ \sigma), \operatorname{coe} . .(a[\sigma] t)$
$\pi_{1} \beta \quad: \quad \pi_{1}(\delta, a) \equiv \delta$
$\begin{array}{ll}\pi \eta & :\left(\pi_{1} \delta, \Pi_{2} \delta\right) \equiv \delta \\ \varepsilon \eta & :\{\sigma: \operatorname{Tms} \Gamma \bullet\} \rightarrow \sigma \equiv \varepsilon\end{array}$

$$
\begin{aligned}
& \text { [id]t : t [id]t } \equiv[\text { [id] T] } \equiv \mathrm{t} \\
& \text { [][]t : (t [} \delta \text {]t) [} \sigma \text {]t } \equiv[\text { [][]T] } \equiv \mathrm{t}[\delta \text { 。 } \sigma \text {]t } \\
& \Pi_{2} \beta: \Pi_{2}(\delta, a) \equiv\left[\pi_{1} \beta\right] \equiv \\
& \operatorname{lam}_{2}[]:(\operatorname{lam} t)[\delta] t \equiv[\Pi[]] \equiv \operatorname{lam}(t[\delta \wedge A] t) \\
& \begin{array}{l}
\Pi \beta \\
\Pi \eta
\end{array} \\
& \text { t) } \equiv \mathrm{t} \\
& \text { lam (app t) } \equiv \mathrm{t}
\end{aligned}
$$

The Recursor


```
module rec (M : Motives)(m : Methods M) where
Con-elim : Con }->\mathrm{ ConM
Ty-elim : (A : Ty \Gamma) -> Tym (Con-elim \Gamma)
Tms-elim:(\delta:Tms \Gamma |)}->\mp@subsup{\textrm{Tms}}{}{M}(\mathrm{ Con-elim Г) (Con-elim }\Delta
Tm-elim :(t:Tm \Gamma A) -> Tm M}(\mathrm{ Con-elim 「) (Ty-elim A)
```

Motives + Methods

$$
=
$$

Algebras
$=$

Models of TT

Set theoretic model

Problem: Set is not a set!

```
data UU : Set
EL : UU }->\mathrm{ Set
data UU where
    '\Pi' : (A : UU) -> (EL A -> UU) -> UU
    '\Sigma' : (A : UU) }->(EL A -> UU) -> UU
    'T' : UU
EL ('\Pi' A B) = (x : EL A) -> EL (B x
EL ('\Sigma' A B) = \Sigma (EL A) \lambda x m EL (B x)
EL 'T' = T
```


M : Motives
 $\mathrm{M}=$ record

$T y^{M}=\lambda \llbracket \Gamma \rrbracket \rightarrow E L \llbracket \Gamma \rrbracket \rightarrow U U$
. $\mathrm{Tms}^{\mathrm{M}}=\lambda \llbracket \Gamma \rrbracket \llbracket \Delta \rrbracket \rightarrow$ EL 【Г】 \rightarrow EL $\mathbb{L} \Delta$
$; \operatorname{Tm}^{M}=\lambda \llbracket \Gamma \rrbracket \llbracket A \rrbracket \rightarrow(\gamma: E L \llbracket \Gamma \rrbracket) \rightarrow E L(\llbracket A \rrbracket \gamma)$
m : Methods M
= record

...
; [id]TM $=$ refl
[][]TM $=$ refl
\ldots

$\mathbb{I _ l \mathbb { C }}: \begin{aligned} & \text { Con } \rightarrow U U \\ & \mathbb{I} \mathbb{I}\end{aligned}: \operatorname{Ty} \Gamma \rightarrow \mathrm{EL}(\mathbb{I} \Gamma \mathbb{I C}) \rightarrow \mathrm{UU}$
 $[\mathbb{I}: T \mathrm{~ms} \Gamma \Delta \rightarrow \mathrm{EL}(\mathbb{I} \Gamma \mathbb{C}) \rightarrow \mathrm{EL}(\mathbb{I} \Delta \mathbb{\|})$
 $\mathbb{I} _\mathbb{I} t:(t: T m \Gamma A) \rightarrow(Y: E L(\mathbb{I} \Gamma \mathbb{I C})) \rightarrow E L(\mathbb{I} A \mathbb{I} Y$

The logical predicate translation (almost finished)
 - Inspired by JP Bernardy et al on parametricity for dependent types
 - A syntactic translation assigning to
 - each context, an extended context
 - to every type, a logical predicate
 - to every term, a proof that the term satisfies the logical predicate.
 - requires dependent eliminator

The presheaf interpretation (started)

- Fix a category C
- Contexts are interpreted as presheaves
- Types as families of presheaves
- Substitutions are natural transformations
- Terms are global sections

Normalisation by evaluation

- Normal forms are a presheaf over the category of variable substitutions.
- We can generalise NBE from simple types to dependent types.
- However, the normal forms have types which are not normal.

Compare to
Categorical reconstruction of a reduction free normalization proof
TA, M.Hofmann, T Streicher CTCS 95

Normal forms with normal types?

- Can we define a mutual datatype of normal forms with normal types?
- No equations, no truncation!
- Use this to define semi-simplicial types?
- We need to define normalisation mutual with normal forms!
- Even in the simplest case (only variables) this leads to a new coherence problem!
- substitution is defined by recursion

```
_[_]T : Ty \(\Delta \rightarrow \operatorname{Vars} \Gamma \Delta \rightarrow\) Ty \(\Gamma\)
\({ }_{-}^{[ }[-] \mathrm{V}: \operatorname{Var} \triangle A \rightarrow(\delta: \operatorname{Vars} \Gamma \Delta) \rightarrow \operatorname{Var} \Gamma(A[\delta] T)\)
data Vars where
    \(\varepsilon \quad: \operatorname{Vars} \Gamma\) •
        \(\_^{\prime}-\quad:(\delta: \operatorname{Vars} \Gamma \Delta)\{\mathrm{A}: \operatorname{Ty} \Delta\} \rightarrow \operatorname{Var} \Gamma(\mathrm{A}[\delta] \mathrm{T})\)
                                \(\rightarrow \operatorname{Vars} \Gamma(\Delta\), A)
wk : \(\{\mathrm{A}: \operatorname{Ty} \Gamma\} \rightarrow \operatorname{Vars}(\Gamma, A) \Gamma\)
data Var where
    vz : Var ( \(\Gamma\), A) (A [ wk ]T)
    \(\operatorname{vs}: \operatorname{Var} \Gamma A \rightarrow \operatorname{Var}(\Gamma, B)(A[w k] T)\)
```


2-level theory

- Start with a strict type theory (with K)
- Introduce a universe with a univalent equality, can only eliminate into the universe.
- Syntax of Type Theory has to be defined in the strict theory
- However we can use the univalent universe to build models.

