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My programming languages CV
1975 - 1982 BASIC

Bettina-von-Arnim Oberschule

1980 - 1983 Z80 Assembler
C
Nixdorf Microprocessor Engineering

1983- 1989 Common Lisp
Scheme
INPRO, Fraunhofer Institute, Expertise GmbH

1986 - 1995 ML
Technical University of Berlin

1989 - now Type Theory
LEGO, ALF, Agda
Universities of Edinburgh, Munich, Gothenburg and
Nottingham

2013 - now Homotopy Type Theory (HoTT)
cubical, cubical Agda
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Avoiding runtime errors

Well typed programs don’t go wrong . . .

(!!) :: [a] -> Int -> a

> [1,2,3] !! 4

*** Exception: !!: index too large
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Avoiding runtime errors

Lookup in agda

_!!_ : Vec A n → Fin n → A

[] !! ()

(x :: as) !! zero = x

(x :: as) !! suc i = as !! i

(1 :: 2 :: 3 :: []) !! 4

is not well typed.
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Typing more programs

What is the type of add ?

x : N
x = add 2 3 4 5

-- evaluates to 14

y : N
y = add 1 2

-- evaluates to 3
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Typing more programs

It depends . . .

NAdd : N → Set

NAdd 0 = N
NAdd (suc n) = N → NAdd n

nadd : {n : N} → N → NAdd n

nadd {0} s = s

nadd {suc n} s i = nadd {n} (i + s)

add : {n : N} → NAdd n

add {n} = nadd {n} 0
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Propositions as types

Let’s do some logic . . .

P ∧ (Q ∨ R) ↔ P ∧ Q ∨ P ∧ R

Is this a tautology?

How do we know?

Use a truth table?
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Propositions as types

Write a program!

P ∧ Q = P × Q

P ∨ Q = P ] Q

P ↔ Q = (P → Q) ∧ (Q → P)

distr : P ∧ (Q ∨ R) ↔ P ∧ Q ∨ P ∧ R

proj1 distr (p , inj1 q) = inj1 (p , q)

proj1 distr (p , inj2 r) = inj2 (p , r)

proj2 distr (inj1 (p , q)) = p , inj1 q

proj2 distr (inj2 (p , r)) = p , inj2 r
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Propositions as types

Classical vs Intuitionistic

Classical A proposition is something that is either true or false.

Prop = Bool

Intuitionistic A proposition is something for which we can have evidence

Prop = Set

Propositions as types
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Propositions as types

The classical lie

We can implement classical propositional logic using Bool:

_&&_ : Bool → Bool → Bool

false && c = false

true && c = c

_||_ : Bool → Bool → Bool

false || c = c

true || c = true

but what about predicate logic?

all : {A : Set}(P : A → Bool) → Bool
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Propositions as types

Propositions as types

all : {A : Set}(P : A → Set) → Set

all {A} P = (x : A) → P x

all∧ :

((x : A) → P x ∧ Q x)

↔ ((x : A) → P x) ∧ ((x : A) → Q x)

proj1 all∧ f = (λ x → proj1 (f x)) ,

(λ x → proj2 (f x))

proj2 all∧ (g , h) = λ x → (g x) , (h x)
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Propositions as types

Why should we care?

We can express any logical condition just using the type system.

In practice proofs and programs are not clearly separated.

record Sort (inp : List N) : Set where

field

out : List N
sorted : Sorted out

perm : inp ∼= out

sort : (inp : List N) → Sort inp
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Totalitarinism

Totalitarianism

Programs that hang are buggy.

We only deal with programs that are total.

We don’t reason about programs that have syntax errors either.

Programs that produce infinite structures are fine. They need to be
productive.

However, it can be hard work to convince a compiler that your
program is total.

You can work with programs that are not explicitly total by saying
trust me.

However, there are some places where you shouldn’t do that.
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Totalitarinism

Where we need to be total

Coercions

coe : {A B : Set} → A ≡ B → (A → B)

coe refl = λ x → x

We never need to evaluate the proof of A ≡ B.
But we need to know that it terminates.
Otherwise type soundness would fail.

Certificates

If the component Sorted outp is partial, then sort

could produce output list that is not sorted.
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Homotopy Type Theory

Hiding of implementation details

Consider two implementations of the natural numbers:

data N1 : Set where

1 : N1

1+_ : N1 → N1

data N2 : Set where

1 : N2

2×_ : N2 → N2

1+2×_ : N2 → N2

There is no predicate that can distinguish them.

We can consistently replace one with the other.

That is not true for set theory!

Type Theory supports hiding of implementation details.

However, Intensional Type Theory doesn’t identify them.
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Homotopy Type Theory

Univalence in HoTT

We can define equivalence of types:

record _∼=_ (A B : Set) : Set where

field

f : A → B

g : B → A

gf : (a : A) → g (f a) ≡ a

fg : (b : B) → f (g b) ≡ b

coh : ...

In particular we can show:

equiv : N1
∼= N2

The univalence principle states that equivalence is equivalent to
equality:

unival : (A ∼= B) ∼= (A ≡ B)

Hence we can derive:

equal : N1 ≡ N2
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Homotopy Type Theory

Higher inductive types in HoTT

Every type comes with its own equality.

Hence in datatype definitions we can also have constructors for
equality.

For example we can define the integers:

data Z : Set where

0 : Z
_+1 : Z → Z
_-1 : Z → Z
+- : ∀ i → (i +1) -1 ≡ i

-+ : ∀ i → (i -1) +1 ≡ i

coh : ...
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Homotopy Type Theory

Cubical type theory

Voevodsky introduced HoTT based on ideas from homotopy theory.

He constructed a mathematical model using simplicial sets.

However, he used classical logic . . .

As a consequence it wasn’t clear how to run definitions in HoTT in
general.

Later this issue was fixed by Thierry Coquand and his team.

They provided a constructive semantics using cubical sets.

This was also implemented in a proof of concept system called
cubical.

There is now a prototypical implementation of cubical agda available.
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Take home

Take home messages

If you never liked Maths but you like functional programming here is a
new chance because Maths is just functional programming!

If you like Maths anyway, here is a new Maths which is much better
than the old one, because it is based on functional programming.

If you don’t care about Maths either way, here is a way to write
programs that say what they do on the tin (i.e. in the type) and the
compiler will check that you are not lying.

If you are thinking that the tool chain isn’t very good yet, you are
probably right. Help us to change this!
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