
Intro
Constructing OTT

Conclusions

Observational Equality, now!
joint work with Conor McBride and Wouter Swierstra

supported by EPSRC grant EP/C512022
Observational Equality for Dependently Typed Programming

Thorsten Altenkirch

School of Computer Science
University of Nottingham

October 5, 2007

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

Equality in DTP
The Equality Dilemma
The observational approach

What is happening with Epigram 2?

Observational Equality is implemented as part of the core
of Epigram 2.
Thanks to Conor McBride, Nicolas Oury, Wouter Swierstra,
Peter Morris and James Chapman.
Today: How to steal (most of) observational equality for
existing systems using generic programming.
Verification of metatheoretic properties by translation.

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

Equality in DTP
The Equality Dilemma
The observational approach

Dependently typed programming (DTP)

Languages:
phase-insensitive:

Cayenne, Epigram, Agda, . . .
phase-sensitive:

DML, Ωmega, Haskell with GADTs, . . .
Equality:

Vec : Nat → Set → Set

as : Vec (x + y) A

how to obtain
??? : Vec (y + x) A

using that x + y = y + x .

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

Equality in DTP
The Equality Dilemma
The observational approach

Extensional vs. Intensional ?

ETT Extensional Type Theory
ITT Intensional Type Theory

OTT Observational Type Theory

ETT ITT OTT
defn vs. prop. eq = 6= 6=
decidable typechecking - + +
open normalisation - + +
obs. equality + - +

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

Equality in DTP
The Equality Dilemma
The observational approach

Equality basics

Equality type (propositional equality)

` A : Set a, b : A
` a =A b : Prop

Introduction: ` a : A
` reflA a : a =A a

Definitional equality, e.g. 0+x ≡ x .
Conversion rule

` s : S ` S ≡ T
` s : T

Embedding:

if ` a ≡ b : A then ` a =A a ≡ a =A b : Prop
and therefore ` reflA a : a =A b

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

Equality in DTP
The Equality Dilemma
The observational approach

Using equality in ETT

Equality reflection
` q : a =A b
` a ≡ b : A

q has disappeared =⇒ ≡ undecidable.
Extensionality law is provable:

if ∀x . f x = g x then (λx . f x) = (λx . g x) so f = g

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

Equality in DTP
The Equality Dilemma
The observational approach

Using equality in ITT

Equality elimination

` q : a =A b ` T : A → Set ` t : T a
substA;a;b q T t : T b

with the associated computational rule

` substA;a;a (reflA a) T t ≡ t : T a

More bureaucratic (every coercion has to be marked).
Extensionality is not provable, e.g. we can show

plus0 : ∀x . 0+x = x+0

but there is no closed proof of:

λx . 0+x = λx . x+0

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

Equality in DTP
The Equality Dilemma
The observational approach

Extensionality as an axiom?

Why don’t we just add an axiom?

q : ∀x . f x = g x
ext q : f = g

We loose canonicity! E.g.

subst (ext plus0) (λ_. Nat) 0 : Nat

cannot be reduced to a numeral.

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

Equality in DTP
The Equality Dilemma
The observational approach

A brief history of equality

Hofmann(PhD 95) : Setoid model to define extensional equality
no large elims.

Hofmann(Types 95) : Conservativity of equality reflection
but we loose canonicity.

A.(LICS 99) : Setoid model with proof-irrelevant proposition
not conservative over ITT.

McBride (PhD 99) Heterogenous equality
also called John Major equality

Oury(TPHOL 05) : Equality reflection for CoC
extending Hofmann’s approach.

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

Equality in DTP
The Equality Dilemma
The observational approach

Equality between sets (computed!) and coercions:

S, T : Set
S = T : Prop

Q : S = T s : S
s [Q:S =T 〉 : T

Heterogenous equality (computed) between values:

s : S t : T
(s : S) = (t : T) : Prop

Why heterogenous? Dependent functions preserve
equality:

∀x , y . (x : A) = (y : A)→(f x : B[x]) = (f y : B[y])

Coherence

Q : S = T s : S
{s ‖ Q:S =T} : (s : S) = (s [Q:S =T 〉 : T)

also requires heterogenous equality!

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

A simple Core Type Theory

set S ::= G | B X :S. S | If T Then S Else S
ground G ::= 0 | 1 | 2
binder B ::= Π | Σ | W

term T ::= 〈〉 | tt | ff | λX :S. T | 〈T,T〉ΣX:S. S | TCWX:S. ST
| T!S | if T/X.S then T else T
| T T | fst T | snd T | rec T/X.S with T

Typing rules (see paper), e.g.

Γ ` s : S Γ ` f : T [s] → Wx :S. T
Γ ` sCWx:S.T f : Wx :S. T

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

Encoding of datatypes

Disjoint union:

S+T 7→ Σb :2. If b Then S Else T
inl s 7→ 〈tt,s〉
inr t 7→ 〈ff,t〉

Natural numbers:
Tr b 7→ If b Then 1 Else 0
Nat 7→ Wb :2. Tr b

zero 7→ ffCλz. z!Nat
suc n 7→ ttCλ_. n

Primitive recursion:

plus 7→ λx y . rec x with
λb. if b then λf h. suc (h 〈〉) else λf h. y

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

A problem: induction / dependent recursion

We would like:

indP : P[zero] → (Πn :Nat. P[n] → P[suc n]) →
Πn :Nat. P[n]

but the obvious program doesn’t type check:

indP 7→ λpz ps n. rec n with
λb. if b then λf h. ps (f 〈〉) (h 〈〉) else λf h. pz

Too many possible implementations of zero such as:

zero′ 7→ ffCλz. suc (suc zero)

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

Encoding the core theory in Agda 2

data Empty : Set where

record Unit : Set where

data Bool : Set where
tt : Bool
ff : Bool

record Σ (S : Set)(T : S → Set) : Set where
fst : S
snd : T fst

data W (S : Set)(T : S → Set) : Set where
C : (x : S) → (T x → W S T) → W S T

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

An inductive-recursive universe

mutual
data ‘set’ : Set where

‘0’, ‘1’, ‘2’ : ‘set’
‘Π’, ‘Σ’, ‘W’ : (S : ‘set’) → (JSK → ‘set’) → ‘set’

J_K : ‘set’ → Set
J‘0’K = Empty
J‘1’K = Unit
J‘2’K = Bool
J‘Π’ S T K = (x : JSK) → JT xK
J‘Σ’ S T K = Σ JSK (λx 7→ JT xK)
J‘W’ S T K = W JSK (λx 7→ JT xK)

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

A propositional fragment

P ::= ⊥ | > | P ∧ P | ∀X :S. P

mutual
data ‘prop’ : Set where

‘⊥’, ‘>’ : ‘prop’
‘∧’ : ‘prop’ → ‘prop’ → ‘prop’
‘∀’ : (S : ‘set’) → (JSK → ‘prop’) → ‘prop’

d_e : ‘prop’ → ‘set’
· · ·

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

Equality of types

Γ ` S set Γ ` T set
Γ ` S = T prop

Γ ` Q : dS = T e Γ ` s : S
Γ ` s [Q:S =T 〉 : T

We are going to define S = T by recursion over S, T .
and then s [Q:S =T 〉 by inspecting s and Q.

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

The easy cases

0 = 0 7→ >
1 = 1 7→ >
2 = 2 7→ >

z [Q: 0=0 〉 7→ z
u [Q: 1=1 〉 7→ u
b [Q: 2=2 〉 7→ b

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

The not so easy cases. . .

(Πx0 :S0. T0) = (Πx1 :S1. T1) 7→ ?
(Σx0 :S0. T0) = (Σx1 :S1. T1) 7→ ?
(Wx0 :S0. T0) = (Wx1 :S1. T1) 7→ ?

S = T 7→ ⊥ for other canonical sets

f0 [Q: Πx0 :S0. T0=Πx1 :S1. T1 〉 7→ ?
p0 [Q: Σx0 :S0. T0=Σx1 :S1. T1 〉 7→ ?

(s0Cf0) [Q: Wx0 :S0. T0=Wx1 :S1. T1 〉 7→ ?
x [Q: S=T 〉 7→ Q!T otherwise

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

Σ-types

(Σx0 :S0. T0) = (Σx1 :S1. T1) 7→ S0 = S1 ∧
∀x0 :S0. ∀x1 :S1. (x0 :S0) = (x1 :S1)
⇒ T0[x0] = T1[x1]

. . . ; 〈QS,QT 〉 : (Σx0 :S0. T0) = (Σx1 :S1. T1);
` 〈s0,t0〉 [〈QS,QT 〉〉 7→ let

s1 7→ s0 [QS〉 : S1
R 7→ QT s0 s1 {s0 ‖ QS} : dT0[s0] = T1[s1] e
t1 7→ t0 [R〉 : T1[s1]

in 〈s1,t1〉 : Σx1 :S1. T1

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

Π-types

(Πx0 :S0. T0) = (Πx1 :S1. T1) 7→
S1 = S0 ∧
∀x1 :S1. ∀x0 :S0. (x1 :S1) = (x0 :S0) ⇒ T0[x0] = T1[x1]

. . . ; 〈QS,QT 〉 : (Πx0 :S0. T0) = (Πx1 :S1. T1);
` f0 [〈QS,QT 〉〉 7→ λs1. let

s0 7→ s1 [QS〉 : S0
t0 7→ f0 s0 : T0[s0]
R 7→ QT s1 s0 {s1 ‖ QS} : dT0[s0] = T1[s1] e
t1 7→ t0 [R〉 : T1[s1]

in t1

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

W-types

See paper.

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

Value equality

Γ ` s : S Γ ` t : T
Γ ` (s : S) = (t : T) prop

Γ ` Q : dS = T e Γ ` s : S
Γ ` {s ‖ Q:S =T} : d(s : S) = (s [Q:S =T 〉 : T)e

We define (s : S) = (t : T) by inspecting s, t .
We are not going to define {s ‖ Q:S =T}
even though we could.

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

The easy cases

(z0 : 0) = (z1 : 0) 7→ >
(u0 : 1) = (u1 : 1) 7→ >
(tt : 2) = (tt : 2) 7→ >
(tt : 2) = (ff : 2) 7→ ⊥
(ff : 2) = (tt : 2) 7→ ⊥
(ff : 2) = (ff : 2) 7→ >

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

Equality of functions

(f0 : Πx0 :S0. T0) = (f1 : Πx1 :S1. T1) 7→
∀x0 :S0. ∀x1 :S1. (x0 : S0) = (x1 : S1) ⇒

(f0 x0 : T0[x0]) = (f1 x1 : T1[x1])

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

Equality of pairs

(p0 : Σx0 :S0. T0) = (p1 : Σx1 :S1. T1) 7→
(fst p0 : S0) = (fst p1 : S1) ∧
(snd p0 : T0[fst p0]) = (snd p1 : T1[fst p1])

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

Strong Normalisation

Lemma (Strong Normalisation)

OTT is strongly normalising.

SKETCH OF PROOF SKETCH

Model the universe construction in a known strongly
normalizing Type Theory (e.g. CIC).

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

Is there something missing?

We haven’t added equations for coherence:

Γ ` Q : dS = T e Γ ` s : S
Γ ` {s ‖ Q:S =T} : d(s : S) = (s [Q:S =T 〉 : T)e

We haven’t defined reflexivity:

Γ ` s : S
Γ ` s :S : d(s : S) = (s : S)e

We haven’t defined respectfulness:

Γ ` S set Γ; x :S ` T set
Γ ` Rx :S. T : d∀y :S. ∀z :S.

(y : S) = (z : S) ⇒ T [y] = T [z] e

And indeed, we are not going to add equations for any of
those constants!

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

What about canonicity ?

We have introduced constants without equations!
We could actually define coherence {s ‖ Q:S =T}.
But not reflexivity (s :S) or respect (Rx :S)
because they have to be shown by induction on terms,
not types.
Are we back at square 1?
We could have just added extensionality?

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

Canonicity from consistency

Lemma (Canonicity from Consistency)
Suppose OTT is consistent, i.e. that there is no s such that
E ` s : 0 . Then, for all normal S and s,

if E ` S set then S is canonical;
if E ` s : S then either s is canonical, or s is a proof.

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

Consistency from the Extensional Theory

Theorem (Consistency)
There is no s such that E ` s : 0.

SKETCHY PROOF SKETCH : Model OTT in ETT.

Corollary (Canonicity)
If E ` S set then S is canonical.
If E ` s : S then s is either canonical or a proof.

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

Induction for natural numbers

indP : P[zero] → (Πn :Nat. P[n] → P[suc n]) →
Πn :Nat. P[n]

indP 7→
λpz ps n. rec n with

λb. if b then λf h. ps (f 〈〉) (h 〈〉)
[?:P[suc (f 〈〉)]=P[ttCf] 〉

else λf h. pz [?:P[zero]=P[ffCf] 〉

See paper on how to fill the ?s.

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

A core theory
Equality and coercions
Metatheoretic properies

Conservativity over ITT?

Definitional laws like

indP pz ps zero 7→ pz

do not hold definitionally!
Instead we have:

indP pz ps zero 7→ pz [· · · :P[zero]=P[zero] 〉

Note that the coercion coerces definitionally equal types!
We solve this problem by defining a quotation operation on
normal forms, which eliminates unnecessary coercions.
You have to modify definitional equality to do this.
(not now!)

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

Summary

We introduce OTT:
an intensional Type Theory
with extensional propositional equality.
Can be implemented within existing ITT
using a universe construction.
We show via the embedding that OTT is normalizing,
definitional equality and type checking are decidable
Canonicity holds for non-propositional types
this follows from the consistency of the extensional theory.
OTT’s definitional equality is conservative over ITT
this requires a modified definitional equality.

Thorsten Altenkirch plpv 07

Intro
Constructing OTT

Conclusions

Missing pieces

Carry out the details of the encoding in CIC.
Definitionally redundant constructors?
Show that ETT is a conservative extension of OTT.
Coinductive data.
Quotient types.
Do we need the consistency of ETT?

Thorsten Altenkirch plpv 07

	Intro
	Equality in DTP
	The Equality Dilemma
	The observational approach

	Constructing OTT
	A core theory
	Equality and coercions
	Metatheoretic properies

	Conclusions

