## Observational Equality, now!

 joint work with Conor McBride and Wouter Swierstra supported by EPSRC grant EP/C512022Observational Equality for Dependently Typed Programming

## Thorsten Altenkirch

School of Computer Science
University of Nottingham

October 5, 2007

## What is happening with Epigram 2?

- Observational Equality is implemented as part of the core of Epigram 2.
- Thanks to Conor McBride, Nicolas Oury, Wouter Swierstra, Peter Morris and James Chapman.
- Today: How to steal (most of) observational equality for existing systems using generic programming.
- Verification of metatheoretic properties by translation.


## Dependently typed programming (DTP)

- Languages:
phase-insensitive:
Cayenne, Epigram, Agda, ...
phase-sensitive:
DML, $\Omega$ mega, Haskell with GADTs, ...
- Equality:

$$
\begin{gathered}
\text { Vec }: \text { Nat } \rightarrow \text { Set } \rightarrow \text { Set } \\
\text { as }: \operatorname{Vec}(x+y) A
\end{gathered}
$$

how to obtain

$$
\text { ???: } \operatorname{Vec}(y+x) A
$$

using that $x+y=y+x$.

## Extensional vs. Intensional?

## ETT Extensional Type Theory <br> ITT Intensional Type Theory <br> OTT Observational Type Theory

|  | ETT | ITT | OTT |
| :--- | :---: | :---: | :---: |
| defn vs. prop. eq | $=$ | $\neq$ | $\neq$ |
| decidable typechecking | - | + | + |
| open normalisation | - | + | + |
| obs. equality | + | - | + |

## Equality basics

- Equality type (propositional equality)

$$
\frac{\vdash A: \text { Set } a, b: A}{\vdash a=A b: \text { Prop }}
$$

- Introduction:

$$
\frac{\vdash a: A}{\vdash \operatorname{refl}_{A} a: a=_{A} a}
$$

- Definitional equality, e.g. $0+x \equiv x$.
- Conversion rule

$$
\frac{\vdash s: S \vdash S \equiv T}{\vdash s: T}
$$

- Embedding:
if $\vdash a \equiv b: A$ then $\vdash a={ }_{A} a \equiv a={ }_{A} b:$ Prop and therefore $\vdash \operatorname{refl}_{A} a: a={ }_{A} b$


## Using equality in ETT

- Equality reflection

$$
\frac{\vdash q: a=A b}{\vdash a \equiv b: A}
$$

- $q$ has disappeared $\Longrightarrow \equiv$ undecidable.
- Extensionality law is provable:

$$
\text { if } \forall x . f x=g x \text { then }(\lambda x . f x)=(\lambda x . g x) \text { so } f=g
$$

## Using equality in ITT

- Equality elimination

$$
\frac{\vdash q: a={ }_{A} b \vdash T: A \rightarrow \text { Set } \vdash t: T a}{\operatorname{subst}_{A ; a ; b} q T t: T b}
$$

with the associated computational rule

$$
\vdash \operatorname{subst}_{A ; a ; a}\left(\operatorname{refl}_{A} a\right) T t \equiv t: T a
$$

- More bureaucratic (every coercion has to be marked).
- Extensionality is not provable, e.g. we can show

$$
\text { plus0 : } \forall x .0+x=x+0
$$

but there is no closed proof of:

$$
\lambda x \cdot 0+x=\lambda x \cdot x+0
$$

## Extensionality as an axiom?

- Why don't we just add an axiom?

$$
\frac{q: \forall x \cdot f x=g x}{\operatorname{ext} q: f=g}
$$

- We loose canonicity! E.g.

$$
\text { subst (ext plus0) ( } \lambda_{-} . \text {Nat) } 0: \text { Nat }
$$

cannot be reduced to a numeral.

## A brief history of equality

Hofmann(PhD 95) : Setoid model to define extensional equality no large elims.
Hofmann(Types 95) : Conservativity of equality reflection but we loose canonicity.
A.(LICS 99) : Setoid model with proof-irrelevant proposition not conservative over ITT.
McBride (PhD 99) Heterogenous equality also called John Major equality
Oury(TPHOL 05) : Equality reflection for CoC extending Hofmann's approach.

- Equality between sets (computed!) and coercions:

$$
\frac{S, T: \text { Set }}{S=T: \text { Prop }} \quad \frac{Q: S=T \quad S: S}{S[Q: S=T\rangle: T}
$$

- Heterogenous equality (computed) between values:

$$
\frac{s: S \quad t: T}{(s: S)=(t: T): \text { Prop }}
$$

- Why heterogenous? Dependent functions preserve equality:

$$
\forall x, y \cdot(x: A)=(y: A) \rightarrow(f x: B[x])=(f y: B[y])
$$

- Coherence

$$
\frac{Q: S=T \quad s: S}{\{s \| Q: S=T\}:(s: S)=(s[Q: S=T\rangle: T)}
$$

also requires heterogenous equality!

## A simple Core Type Theory

$$
\begin{array}{lrl}
\text { set } & \mathbf{S}::=\mathbf{G}|\mathbf{B} \mathbf{X}: \mathbf{S} . \mathbf{S}| \text { If } \mathbf{T} \text { Then } \mathbf{S} \text { Else } \mathbf{S} \\
\text { ground } & \mathbf{G}::=0|1| 2 \\
\text { binder } & \mathbf{B}::= & \Pi|\Sigma| \mathbf{W} \\
\text { term } & \mathbf{T}::= & \rangle| \mathbb{t}|\boldsymbol{f}| \lambda \mathbf{X}: \mathbf{S} . \mathbf{T}\left|\langle\mathbf{T}, \mathbf{T}\rangle_{\Sigma \mathbf{X}: \mathbf{S} . \mathbf{s}}\right| \mathbf{T} \triangleleft_{\text {wX:S. }} \mathbf{T} \\
& & |\mathbf{T}!\mathbf{S}| \text { if } \mathbf{T} / \mathbf{X} . \mathbf{S} \text { then } \mathbf{T} \text { else } \mathbf{T} \\
& & \mathbf{T} \mathbf{T} \mid \text { fst } \mathbf{T} \mid \text { snd } \mathbf{T} \mid \text { rec } \mathbf{T} / \mathbf{X . S} \text { with } \mathbf{T}
\end{array}
$$

Typing rules (see paper), e.g.

$$
\frac{\Gamma \vdash s: S \quad \Gamma \vdash f: T[s] \rightarrow \mathrm{W} x: S . T}{\Gamma \vdash s \triangleleft{ }_{\mathrm{W} x: S . T} f: \mathrm{W} x: S . T}
$$

## Encoding of datatypes

- Disjoint union:

$$
\begin{aligned}
S+T & \mapsto \Sigma b: 2 \text {. If } b \text { Then } S \text { Else } T \\
\text { inl } s & \mapsto\langle\mathbb{t}, s\rangle \\
\text { inr } t & \mapsto\langle\mathbb{f}, t\rangle
\end{aligned}
$$

- Natural numbers:

$$
\begin{aligned}
\operatorname{Tr} b & \mapsto \text { If } b \text { Then } 1 \text { Else } 0 \\
\text { Nat } & \mapsto \mathrm{W} b: 2 . \operatorname{Tr} b \\
\text { zero } & \mapsto \mathbb{f} \triangleleft \lambda z . z!\text { Nat } \\
\text { suc } n & \mapsto \mathbb{t} \triangleleft \lambda . n
\end{aligned}
$$

- Primitive recursion:

$$
\begin{aligned}
& \text { plus } \mapsto \lambda x y \text {. rec } x \text { with } \\
& \quad \lambda b \text {. if } b \text { then } \lambda f h \text {. suc }(h\rangle) \text { else } \lambda f h . y
\end{aligned}
$$

## A problem: induction / dependent recursion

We would like:

$$
\begin{aligned}
\operatorname{ind} P: & P[\text { zero }] \rightarrow(\Pi n: \text { Nat. } P[n] \rightarrow P[\text { suc } n]) \rightarrow \\
& \Pi n: \text { Nat. } P[n]
\end{aligned}
$$

but the obvious program doesn't type check:
$\operatorname{ind}_{P} \mapsto \lambda p z p s n$. rec $n$ with
$\lambda b$. if $b$ then $\lambda f h$. $p s(f\rangle)(h\rangle)$ else $\lambda f h$. $p z$
Too many possible implementations of zero such as:

$$
\text { zero }^{\prime} \mapsto \mathbb{f} \triangleleft \lambda z \text {. suc (suc zero) }
$$

## Encoding the core theory in Agda 2

data Empty : Set where<br>record Unit : Set where<br>data Bool : Set where<br>\# : Bool<br>ff : Bool

$\operatorname{record} \Sigma(S: \operatorname{Set})(T: S \rightarrow$ Set $):$ Set where
fst: S
snd : $T$ fst
data $\mathrm{W}(S: \operatorname{Set})(T: S \rightarrow$ Set $):$ Set where
$\__{-}:(x: S) \rightarrow(T x \rightarrow \mathrm{~W} S T) \rightarrow \mathrm{W} S T$

## An inductive－recursive universe

## mutual

$$
\begin{aligned}
& \text { data 'set' : Set where } \\
& \text { '0', '1', '2’ : ‘set' } \\
& \text { ' } \Pi \text { ', ' } \Sigma \text { ', 'W' : }(S: \times s e t ’) \rightarrow(\llbracket S \rrbracket \rightarrow \text { 'set') } \rightarrow \text { 'set' } \\
& \text { [_] : 'set' } \rightarrow \text { Set } \\
& \text { 【0'】 = Empty } \\
& \text { 【‘1’] = Unit } \\
& \text { 【'2’] = Bool } \\
& \llbracket \Pi^{\prime} S T \rrbracket=(x: \llbracket S \rrbracket) \rightarrow \llbracket T x \rrbracket \\
& \llbracket ‘ \Sigma^{\prime} S T \rrbracket=\Sigma \llbracket S \rrbracket(\lambda x \mapsto \llbracket T x \rrbracket) \\
& \llbracket{ }^{\prime} \mathrm{W} ' S T \rrbracket=\mathrm{W} \llbracket S \rrbracket(\lambda x \mapsto \llbracket T x \rrbracket)
\end{aligned}
$$

## A propositional fragment

$$
\mathbf{P}::=\perp|\top| \mathbf{P} \wedge \mathbf{P} \mid \forall \mathbf{X}: \mathbf{S} . \mathbf{P}
$$

## mutual

data 'prop' : Set where
' ${ }^{\prime}$ ', ‘T' : 'prop’
‘ $\wedge$ ' : 'prop' $\rightarrow$ 'prop' $\rightarrow$ 'prop’
$\not{ }^{\prime}$ ' $:(S:$ 'set’) $\rightarrow(\llbracket S \rrbracket \rightarrow$ 'prop') $\rightarrow$ 'prop'
「_〕 : 'prop' $\rightarrow$ 'set'

## Equality of types

$$
\frac{\Gamma \vdash S \text { set } \Gamma \vdash T \text { set }}{\Gamma \vdash S=T \text { prop }} \quad \frac{\Gamma \vdash Q:\lceil S=T\rceil \Gamma \vdash s: S}{\Gamma \vdash s[Q: S=T\rangle: T}
$$

- We are going to define $S=T$ by recursion over $S, T$.
- and then $s[Q: S=T\rangle$ by inspecting $s$ and $Q$.


## The easy cases

$$
\begin{gathered}
0=0 \mapsto T \\
1=1 \mapsto T \\
2=2 \mapsto T \\
z[Q: 0=0\rangle \mapsto z \\
u[Q: 1=1\rangle \mapsto u \\
b[Q: 2=2\rangle \mapsto b
\end{gathered}
$$

## The not so easy cases. . .

$$
\begin{aligned}
\left(\Pi x_{0}: S_{0} \cdot T_{0}\right) & =\left(\Pi x_{1}: S_{1} \cdot T_{1}\right) \mapsto ? \\
\left(\Sigma x_{0}: S_{0} \cdot T_{0}\right) & =\left(\Sigma x_{1}: S_{1} \cdot T_{1}\right) \mapsto ? \\
\left(W x_{0}: S_{0} \cdot T_{0}\right) & =\left(W x_{1}: S_{1} \cdot T_{1}\right) \mapsto ? \\
S & =T
\end{aligned}
$$

$$
\begin{aligned}
& f_{0}\left[Q: \Pi x_{0}: S_{0}, T_{0}=\Pi x_{1}: S_{1}, T_{1}\right\rangle \mapsto ? \\
& p_{0}\left[Q: \Sigma x_{0}: S_{0} . T_{0}=\Sigma x_{1}: S_{1}, T_{1}\right\rangle \mapsto ? \\
& \left(s_{0} \triangleleft f_{0}\right)\left[Q: W x_{0}: S_{0} . T_{0}=W x_{1}: S_{1}, T_{1}\right\rangle \mapsto ? \\
& x[Q: \quad S=T \quad\rangle \mapsto Q!T \text { otherwise }
\end{aligned}
$$

## 乏-types

$$
\begin{aligned}
\left(\Sigma x_{0}: S_{0} \cdot T_{0}\right)=\left(\Sigma x_{1}: S_{1} \cdot T_{1}\right) \mapsto & S_{0}=S_{1} \wedge \\
& \forall x_{0}: S_{0} \cdot \forall x_{1}: S_{1} \cdot\left(x_{0}: S_{0}\right)=\left(x_{1}: S_{1}\right) \\
& \Rightarrow T_{0}\left[x_{0}\right]=T_{1}\left[x_{1}\right]
\end{aligned}
$$

$\ldots ;\left\langle\mathrm{Q}_{S}, \mathrm{Q}_{T}\right\rangle:\left(\Sigma x_{0}: S_{0} . T_{0}\right)=\left(\Sigma x_{1}: S_{1}, T_{1}\right) ;$
$\vdash\left\langle\mathrm{s}_{0}, \mathrm{t}_{0}\right\rangle\left[\left\langle\mathrm{Q}_{s}, \mathrm{Q}_{T}\right\rangle\right\rangle \mapsto$ let

$$
\begin{aligned}
& \mathrm{s}_{1} \mapsto \mathrm{~s}_{0}\left[\mathrm{Q}_{s}\right\rangle: S_{1} \\
& \mathrm{R} \mapsto \mathrm{Q}_{T} \mathrm{~s}_{0} \mathrm{~s}_{1}\left\{\mathrm{~s}_{0} \| \mathrm{Q}_{s}\right\}:\left\lceil T_{0}\left[\mathrm{~s}_{0}\right]=T_{1}\left[\mathrm{~s}_{1}\right]\right\rceil \\
& \mathrm{t}_{1} \mapsto \mathrm{t}_{0}[\mathrm{R}\rangle: T_{1}\left[\mathrm{~s}_{1}\right] \\
& \text { in }\left\langle\mathrm{s}_{1}, \mathrm{t}_{1}\right\rangle: \Sigma x_{1}: S_{1} \cdot T_{1}
\end{aligned}
$$

## П-types

$$
\begin{aligned}
& \left(\Pi x_{0}: S_{0} \cdot T_{0}\right)=\left(\Pi x_{1}: S_{1} \cdot T_{1}\right) \mapsto \\
& S_{1}=S_{0} \wedge \\
& \forall x_{1}: S_{1} \cdot \forall x_{0}: S_{0} \cdot\left(x_{1}: S_{1}\right)=\left(x_{0}: S_{0}\right) \Rightarrow T_{0}\left[x_{0}\right]=T_{1}\left[x_{1}\right]
\end{aligned}
$$

$\ldots ;\left\langle\mathrm{Q}_{s}, \mathrm{Q}_{T}\right\rangle:\left(\Pi x_{0}: S_{0} . T_{0}\right)=\left(\Pi x_{1}: S_{1} . T_{1}\right) ;$
$\vdash f_{0}\left[\left\langle\mathrm{Q}_{s}, \mathrm{Q}_{T}\right\rangle\right\rangle \mapsto \lambda s_{1}$. let

$$
\begin{aligned}
& \mathrm{s}_{0} \mapsto \mathrm{~s}_{1}\left[\mathrm{Q}_{s}\right\rangle: S_{0} \\
& \mathrm{t}_{0} \mapsto \mathrm{t}_{0} \mathrm{~s}_{0}: T_{0}\left[\mathrm{~s}_{0}\right] \\
& \mathrm{R} \mapsto \mathrm{Q}_{T} \mathrm{~s}_{1} \mathrm{~s}_{0}\left\{s_{1} \| \mathrm{Q} s\right\}:\left\lceil T_{0}\left[\mathrm{~s}_{0}\right]=T_{1}\left[s_{1}\right]\right\rceil \\
& \mathrm{t}_{1} \mapsto \mathrm{t}_{0}[\mathrm{R}\rangle: T_{1}\left[\mathrm{~s}_{1}\right] \\
& \text { in } \mathrm{t}_{1}
\end{aligned}
$$

## W-types

## See paper.

## Value equality

$$
\begin{gathered}
\Gamma \vdash s: S \quad \Gamma \vdash t: T \\
\Gamma \vdash(s: S)=(t: T) \text { prop } \\
\Gamma \vdash\{s \| Q: S=T\}:\lceil(S: S)=(s[Q: S=T\rangle: T)\rceil
\end{gathered}
$$

- We define $(s: S)=(t: T)$ by inspecting $s, t$.
- We are not going to define $\{s \| Q: S=T\}$ even though we could.


## The easy cases

$$
\begin{aligned}
& \left(z_{0}: 0\right)=\left(z_{1}: 0\right) \mapsto T \\
& \left(u_{0}: 1\right)=\left(u_{1}: 1\right) \mapsto T \\
& (\mathbb{t}: 2)=(\mathbb{t}: 2) \mapsto T \\
& (t: 2)=(f: 2) \mapsto \perp \\
& \text { (f: } 2 \text { ) }=(\mathbb{t}: 2) \mapsto \perp \\
& \text { (f: } 2 \text { ) }=(f: 2) \mapsto \top
\end{aligned}
$$

## Equality of functions

$$
\begin{gathered}
\left(f_{0}: \Pi x_{0}: S_{0} \cdot T_{0}\right)=\left(f_{1}: \Pi x_{1}: S_{1} \cdot T_{1}\right) \mapsto \\
\forall x_{0}: S_{0} \cdot \forall x_{1}: S_{1} \cdot\left(x_{0}: S_{0}\right)=\left(x_{1}: S_{1}\right) \Rightarrow \\
\left(f_{0} x_{0}: T_{0}\left[x_{0}\right]\right)=\left(f_{1} x_{1}: T_{1}\left[x_{1}\right]\right)
\end{gathered}
$$

## Equality of pairs

$$
\begin{aligned}
& \left(p_{0}: \Sigma x_{0}: S_{0} \cdot T_{0}\right)=\left(p_{1}: \Sigma x_{1}: S_{1} \cdot T_{1}\right) \mapsto \\
& \quad\left(\text { fst } p_{0}: S_{0}\right)=\left(\text { fst } p_{1}: S_{1}\right) \wedge \\
& \left(\text { snd } p_{0}: T_{0}\left[\text { fst } p_{0}\right]\right)=\left(\text { snd } p_{1}: T_{1}\left[\text { fst } p_{1}\right]\right)
\end{aligned}
$$

## Strong Normalisation

## Lemma (Strong Normalisation)

OTT is strongly normalising.
Sketch of Proof Sketch
Model the universe construction in a known strongly normalizing Type Theory (e.g. CIC).

## Is there something missing?

- We haven't added equations for coherence:

$$
\frac{\Gamma \vdash Q:\lceil S=T\rceil \quad \Gamma \vdash s: S}{\Gamma \vdash\{s \| Q: S=T\}:\lceil(s: S)=(s[Q: S=T\rangle: T)\rceil}
$$

- We haven't defined reflexivity:

$$
\frac{\Gamma \vdash s: S}{\Gamma \vdash s: S:\lceil(s: S)=(s: S)\rceil}
$$

- We haven't defined respectfulness:

$$
\begin{aligned}
& \Gamma \vdash S \text { set } \Gamma ; x: S \vdash T \text { set } \\
& \Gamma \vdash \mathrm{R} x: S . T:\lceil\forall y: S . \forall z: S . \\
& \quad(y: S)=(z: S) \Rightarrow T[y]=T[z]\rceil
\end{aligned}
$$

- And indeed, we are not going to add equations for any of those constants!


## What about canonicity ?

- We have introduced constants without equations!
- We could actually define coherence $\{s \| Q: S=T\}$.
- But not reflexivity $(\overline{s: S})$ or respect ( $\mathrm{R} x: S$ ) because they have to be shown by induction on terms, not types.
- Are we back at square 1 ?

We could have just added extensionality?

## Canonicity from consistency

## Lemma (Canonicity from Consistency)

Suppose OTT is consistent, i.e. that there is no s such that $\mathcal{E} \vdash s: 0$. Then, for all normal $S$ and $s$,

- if $\mathcal{E} \vdash S$ set then $S$ is canonical;
- if $\mathcal{E} \vdash s: S$ then either $s$ is canonical, or $s$ is a proof.

Theorem (Consistency)
There is no s such that $\mathcal{E} \vdash s: 0$.
Sketchy Proof Sketch : Model OTT in ETT.
Corollary (Canonicity)
If $\mathcal{E} \vdash S$ set then $S$ is canonical.
If $\mathcal{E} \vdash s: S$ then $s$ is either canonical or a proof.

## Induction for natural numbers

$$
\begin{aligned}
& \text { ind } P: P[\text { zero }] \rightarrow(\Pi n: \text { Nat. } P[n] \rightarrow P[\text { suc } n]) \rightarrow \\
& \Pi n \text { :Nat. } P[n] \\
& \operatorname{ind}_{P} \mapsto \\
& \lambda p z p s n \text {. rec } n \text { with } \\
& \lambda b \text {. if } b \text { then } \lambda f h \text {. ps }(f\rangle)(h\rangle) \\
& {[?: P[\operatorname{suc}(f\langle \rangle)]=P[t \Delta f]\rangle} \\
& \text { else } \lambda f h . p z[?: P[z e r o]=P[f f f]\rangle
\end{aligned}
$$

- See paper on how to fill the ?s.


## Conservativity over ITT?

- Definitional laws like

$$
\operatorname{ind}_{P} p z \text { ps zero } \mapsto p z
$$

do not hold definitionally!

- Instead we have:

$$
\operatorname{ind}_{P} p z p s \text { zero } \mapsto p z[\cdots: P[\text { zero }]=P[\text { zero }]\rangle
$$

- Note that the coercion coerces definitionally equal types!
- We solve this problem by defining a quotation operation on normal forms, which eliminates unnecessary coercions.
- You have to modify definitional equality to do this. (not now!)


## Summary

- We introduce OTT: an intensional Type Theory with extensional propositional equality.
- Can be implemented within existing ITT using a universe construction.
- We show via the embedding that OTT is normalizing, definitional equality and type checking are decidable
- Canonicity holds for non-propositional types this follows from the consistency of the extensional theory.
- OTT's definitional equality is conservative over ITT this requires a modified definitional equality.


## Missing pieces

- Carry out the details of the encoding in CIC.
- Definitionally redundant constructors?
- Show that ETT is a conservative extension of OTT.
- Coinductive data.
- Quotient types.
- Do we need the consistency of ETT?

