Observational Equality, now! joint work with Conor McBride and Wouter Swierstra supported by EPSRC grant EP/C512022 Observational Equality for Dependently Typed Programming

Thorsten Altenkirch

School of Computer Science University of Nottingham

October 5, 2007

Equality in DTP The Equality Dilemma The observational approach

What is happening with Epigram 2?

- Observational Equality is implemented as part of the core of Epigram 2.
- Thanks to Conor McBride, Nicolas Oury, Wouter Swierstra, Peter Morris and James Chapman.
- **Today:** How to steal (most of) observational equality for existing systems using generic programming.
- Verification of metatheoretic properties by translation.

Equality in DTP The Equality Dilemma The observational approach

Dependently typed programming (DTP)

• Languages:

phase-insensitive:

Cayenne, Epigram, Agda, ...

phase-sensitive:

DML, Ωmega, Haskell with GADTs, ...

Equality:

Vec : Nat \rightarrow Set \rightarrow Set as : Vec (x + y) A

how to obtain

??? : Vec(y + x) A

using that x + y = y + x.

Equality in DTP The Equality Dilemma The observational approach

Extensional vs. Intensional ?

ETT Extensional Type Theory

- ITT Intensional Type Theory
- OTT Observational Type Theory

	ETT	ITT	OTT
defn vs. prop. eq	=	¥	\neq
decidable typechecking	-	+	+
open normalisation	-	+	+
obs. equality	+	-	+

Equality in DTP The Equality Dilemma The observational approach

Equality basics

• Equality type (propositional equality)

- Introduction: $\vdash a : A$ $\vdash refl_{a} : a = a$
- Definitional equality, e.g. $0+x \equiv x$.
- Conversion rule

$$\frac{\vdash s:S \vdash S \equiv T}{\vdash s:T}$$

• Embedding:

if $\vdash a \equiv b : A$ then $\vdash a =_A a \equiv a =_A b :$ Prop and therefore $\vdash \operatorname{refl}_A a : a =_A b$

Equality in DTP The Equality Dilemma The observational approach

Using equality in ETT

Equality reflection

$$\frac{\vdash q: a =_A b}{\vdash a \equiv b: A}$$

- q has disappeared \implies \equiv undecidable.
- Extensionality law is provable:

if $\forall x. f x = g x$ then $(\lambda x. f x) = (\lambda x. g x)$ so f = g

Equality in DTP The Equality Dilemma The observational approach

Using equality in ITT

Equality elimination

$$\frac{-q:a=_Ab \vdash T:A \rightarrow \text{Set} \vdash t:Ta}{\text{subst}_{A;a;b} q T t:Tb}$$

with the associated computational rule

 $\vdash \text{ subst}_{A;a;a} (\operatorname{refl}_A a) T t \equiv t : T a$

- More bureaucratic (every coercion has to be marked).
- Extensionality is not provable, e.g. we can show

plus0 : $\forall x. \mathbf{0} + x = x + \mathbf{0}$

but there is no closed proof of:

 $\lambda x. 0 + x = \lambda x. x + 0$

Equality in DTP The Equality Dilemma The observational approach

Extensionality as an axiom?

• Why don't we just add an axiom?

$$\frac{q: \forall x. f x = g x}{\text{ext } q: f = g}$$

• We loose canonicity! E.g.

subst (ext plus0) (λ _. Nat) 0 : Nat

cannot be reduced to a numeral.

Equality in DTP The Equality Dilemma The observational approach

A brief history of equality

Hofmann(PhD 95) : Setoid model to define extensional equality no large elims.

- Hofmann(Types 95) : Conservativity of equality reflection but we loose canonicity.
- A.(LICS 99) : Setoid model with proof-irrelevant proposition not conservative over ITT.
- McBride (PhD 99) Heterogenous equality also called *John Major equality*
- Oury(TPHOL 05) : Equality reflection for CoC extending Hofmann's approach.

Intro Equality in DTP Constructing OTT The Equality Dilemma Conclusions The observational approach

• Equality between sets (computed!) and coercions:

$$\frac{S, T : Set}{S = T : Prop} \qquad \frac{Q : S = T \quad s : S}{s \left[Q:S=T\right] : T}$$

• Heterogenous equality (computed) between values:

$$\frac{s:S \quad t:T}{(s:S) = (t:T):Prop}$$

• Why heterogenous? Dependent functions preserve equality:

$$\forall x, y. (x : A) = (y : A) \rightarrow (f x : B[x]) = (f y : B[y])$$

• Coherence

$$\frac{Q:S=T \quad s:S}{\{s \parallel Q:S=T\}:(s:S)=(s \mid Q:S=T\rangle:T)}$$

also requires heterogenous equality!

A core theory Equality and coercions Metatheoretic properies

A simple Core Type Theory

set S ::= G | BX: S. S | If T Then S Else S

- ground G ::= 0 | 1 | 2
- binder $\mathbf{B} ::= \Pi \mid \Sigma \mid \mathbf{W}$
- $\begin{array}{ll} \mathrm{term} & \mathsf{T} ::= \ \langle \rangle \mid t \mid f \mid \lambda X \colon S. \ T \mid \langle \mathsf{T}, \mathsf{T} \rangle_{\Sigma X \colon S. \ S} \mid \mathsf{T} \lhd_{\mathsf{W} X \colon S. \ S} \mathsf{T} \\ & \mid \mathsf{T} \: | \: \mathsf{S} \mid \mathsf{if} \: \mathsf{T} / X. \mathsf{S} \: \mathsf{then} \: \mathsf{T} \: \mathsf{else} \: \mathsf{T} \\ & \mid \: \mathsf{T} \: \mathsf{T} \mid \mathsf{fst} \: \mathsf{T} \mid \mathsf{snd} \: \mathsf{T} \mid \mathsf{rec} \: \mathsf{T} / X. \mathsf{S} \: \mathsf{with} \: \mathsf{T} \end{array}$

Typing rules (see paper), e.g.

$$\frac{\Gamma \vdash s: S \quad \Gamma \vdash f: T[s] \rightarrow \mathsf{W}x: S. T}{\Gamma \vdash s \triangleleft_{\mathsf{W}xS.T} f: \mathsf{W}x: S. T}$$

A core theory Equality and coercions Metatheoretic properies

Encoding of datatypes

• Disjoint union:

Natural numbers:

Tr b → If b Then 1 Else 0 Nat → Wb:2. Tr b zero → $\mathbf{f} \triangleleft \lambda z. z!$ Nat suc n → $\mathbf{t} \triangleleft \lambda_{-}. n$

• Primitive recursion:

plus $\mapsto \lambda x y$. rec x with λb . if b then $\lambda f h$. suc $(h \langle \rangle)$ else $\lambda f h$. y Intro A core theory Constructing OTT Equality and coercic Conclusions Metatheoretic prope

A problem: induction / dependent recursion

We would like:

 $\operatorname{ind}_{P} : P[\operatorname{zero}] \to (\prod n : \operatorname{Nat.} P[n] \to P[\operatorname{suc} n]) \to \prod n : \operatorname{Nat.} P[n]$

but the obvious program doesn't type check:

ind_P $\mapsto \lambda pz \, ps \, n. \, \text{rec} \, n \, \text{with}$ $\lambda b. \, \text{if} \, b \, \text{then} \, \lambda f \, h. \, ps(f\langle \rangle)(h\langle \rangle) \, \text{else} \, \lambda f \, h. \, pz$

Too many possible implementations of zero such as:

 $\operatorname{zero}' \mapsto \mathbf{f} \triangleleft \lambda z. \operatorname{suc} (\operatorname{suc} \operatorname{zero})$

Intro A c Constructing OTT Equ Conclusions Met

A core theory Equality and coercions Metatheoretic properies

Encoding the core theory in Agda 2

data Empty : Set where record Unit : Set where data Bool : Set where t: Bool f: Bool record Σ (S : Set)(T : S \rightarrow Set) : Set where fst : S snd : T fst data W (S : Set)(T : $S \rightarrow$ Set) : Set where

 $_ \triangleleft : (x : S) \rightarrow (T x \rightarrow W S T) \rightarrow W S T$

Intro Constructing OTT Conclusions A core theory Equality and c Metatheoretic

An inductive-recursive universe

```
mutual
    data 'set' : Set where
         '0'. '1'. '2' : 'set'
         (\Pi', \Sigma', W': (S: set') \rightarrow (\llbracket S \rrbracket \rightarrow set') \rightarrow set')
    \llbracket \rrbracket: 'set' \rightarrow Set
    ['0'] = Empty
    ['1'] = Unit
    [2] = Bool
    \llbracket \Pi' S T \rrbracket = (x : \llbracket S \rrbracket) \to \llbracket T x \rrbracket
    \llbracket \Sigma' S T \rrbracket = \Sigma \llbracket S \rrbracket (\lambda x \mapsto \llbracket T x \rrbracket)
    \llbracket \mathbf{W}' \ S \ T \rrbracket = \mathbf{W} \llbracket S \rrbracket (\lambda x \mapsto \llbracket T \ x \rrbracket)
```

A core theory Equality and coercions Metatheoretic properies

A propositional fragment

$\mathbf{P} ::= \perp \mid \top \mid \mathbf{P} \land \mathbf{P} \mid \forall \mathbf{X} : \mathbf{S}. \ \mathbf{P}$

```
mutual

data 'prop' : Set where

'\perp', '\top' : 'prop'

'\wedge' : 'prop' \rightarrow 'prop' \rightarrow 'prop'

'\forall' : (S : 'set') \rightarrow ([S] \rightarrow 'prop') \rightarrow 'prop'

[\_] : 'prop' \rightarrow 'set'

....
```

A core theory Equality and coercions Metatheoretic properies

Equality of types

$$\frac{\Gamma \vdash S \text{ set } \Gamma \vdash T \text{ set}}{\Gamma \vdash S = T \text{ prop}} \qquad \frac{\Gamma \vdash Q : \lceil S = T \rceil \quad \Gamma \vdash s : S}{\Gamma \vdash s [Q:S=T\rangle : T}$$

- We are going to define S = T by recursion over S, T.
- and then s[Q:S=T) by inspecting s and Q.

A core theory Equality and coercions Metatheoretic properies

The easy cases

$$0 = 0 \mapsto \top$$

$$1 = 1 \mapsto \top$$

$$2 = 2 \mapsto \top$$

A core theory Equality and coercions Metatheoretic properies

The not so easy cases...

$$\begin{array}{ll} (\Pi x_0 : S_0, T_0) = (\Pi x_1 : S_1, T_1) & \mapsto ?\\ (\Sigma x_0 : S_0, T_0) = (\Sigma x_1 : S_1, T_1) & \mapsto ?\\ (W x_0 : S_0, T_0) = (W x_1 : S_1, T_1) & \mapsto ?\\ S = T & \mapsto \bot \text{ for other canonical sets} \end{array}$$

Intro A co Constructing OTT Equ Conclusions Meta

A core theory Equality and coercions Metatheoretic properies

$$\begin{aligned} (\Sigma x_0 : S_0, T_0) &= (\Sigma x_1 : S_1, T_1) \mapsto S_0 = S_1 \land \\ \forall x_0 : S_0, \forall x_1 : S_1, (x_0 : S_0) = (x_1 : S_1) \\ &\Rightarrow T_0[x_0] = T_1[x_1] \end{aligned}$$

$$\begin{array}{l} \ldots; \langle \mathbf{Q}_{\mathcal{S}}, \mathbf{Q}_{\mathcal{T}} \rangle : (\Sigma x_0 : \mathcal{S}_0, T_0) = (\Sigma x_1 : \mathcal{S}_1, T_1); \\ \vdash \langle \mathbf{s}_0, \mathbf{t}_0 \rangle \left[\langle \mathbf{Q}_{\mathcal{S}}, \mathbf{Q}_{\mathcal{T}} \rangle \right\rangle \mapsto \textbf{let} \\ & \mathbf{s}_1 \mapsto \mathbf{s}_0 \left[\mathbf{Q}_{\mathcal{S}} \rangle : \mathcal{S}_1 \\ & \mathbf{R} \mapsto \mathbf{Q}_{\mathcal{T}} \, \mathbf{s}_0 \, \mathbf{s}_1 \left\{ \mathbf{s}_0 \parallel \mathbf{Q}_{\mathcal{S}} \right\} : \left\lceil T_0[\mathbf{s}_0] = T_1[\mathbf{s}_1] \right\rceil \\ & \mathbf{t}_1 \mapsto \mathbf{t}_0 \left[\mathbf{R} \right\rangle : T_1[\mathbf{s}_1] \\ & \textbf{in} \left\langle \mathbf{s}_1, \mathbf{t}_1 \right\rangle : \Sigma x_1 : \mathcal{S}_1, T_1 \end{array}$$

Intro A Constructing OTT Eq Conclusions Me

A core theory Equality and coercions Metatheoretic properies

П-types

$$\begin{array}{l} (\Pi x_0 : S_0, T_0) = (\Pi x_1 : S_1, T_1) & \mapsto \\ S_1 = S_0 & \land \\ \forall x_1 : S_1, \forall x_0 : S_0, (x_1 : S_1) = (x_0 : S_0) \Rightarrow T_0[x_0] = T_1[x_1] \end{array}$$

$$\begin{array}{l} \ldots; \langle \mathbf{Q}_{S}, \mathbf{Q}_{T} \rangle : (\Pi x_{0} : S_{0}. \ T_{0}) = (\Pi x_{1} : S_{1}. \ T_{1}); \\ \vdash \ f_{0} \left[\langle \mathbf{Q}_{S}, \mathbf{Q}_{T} \rangle \rangle \mapsto \lambda s_{1}. \ \mathbf{let} \\ s_{0} \mapsto s_{1} \left[\mathbf{Q}_{S} \rangle : S_{0} \\ t_{0} \mapsto f_{0} \ s_{0} : \ T_{0}[s_{0}] \\ \mathbf{R} \mapsto \mathbf{Q}_{T} \ s_{1} \ s_{0} \ \{s_{1} \parallel \mathbf{Q}_{S}\} : \left\lceil T_{0}[s_{0}] = T_{1}[s_{1}] \right\rceil \\ t_{1} \mapsto t_{0} \left[\mathbf{R} \rangle : \ T_{1}[s_{1}] \\ \mathbf{in} \ t_{1} \end{array}$$

A core theory Equality and coercions Metatheoretic properies

See paper.

A core theory Equality and coercions Metatheoretic properies

Value equality

$$\frac{\Gamma \vdash s : S \quad \Gamma \vdash t : T}{\Gamma \vdash (s : S) = (t : T) \text{ prop}}$$
$$\frac{\Gamma \vdash Q : [S = T] \quad \Gamma \vdash s : S}{\Gamma \vdash \{s \parallel Q : S = T\} : [(s : S) = (s [Q : S = T) : T)]}$$

- We define (s: S) = (t: T) by inspecting s, t.
- We are not going to define {*s* || *Q*:*S* = *T*} even though we could.

A core theory Equality and coercions Metatheoretic properies

The easy cases

$$\begin{aligned} (z_0:0) &= (z_1:0) \mapsto \top \\ (u_0:1) &= (u_1:1) \mapsto \top \\ (t:2) &= (t:2) \quad \mapsto \top \\ (t:2) &= (f:2) \quad \mapsto \bot \\ (f:2) &= (t:2) \quad \mapsto \bot \\ (f:2) &= (f:2) \quad \mapsto \top \end{aligned}$$

A core theory Equality and coercions Metatheoretic properies

Equality of functions

A core theory Equality and coercions Metatheoretic properies

Equality of pairs

$$\begin{array}{l} (p_0: \Sigma x_0: S_0. \ T_0) = (p_1: \Sigma x_1: S_1. \ T_1) \mapsto \\ (\text{fst } p_0: S_0) = (\text{fst } p_1: S_1) \land \\ (\text{snd } p_0: \ T_0[\text{fst } p_0]) = (\text{snd } p_1: \ T_1[\text{fst } p_1]) \end{array}$$

A core theory Equality and coercions Metatheoretic properies

Strong Normalisation

Lemma (Strong Normalisation)

OTT is strongly normalising.

SKETCH OF PROOF SKETCH Model the universe construction in a known strongly normalizing Type Theory (e.g. CIC).

Is there something missing?

• We haven't added equations for coherence:

$$\frac{\Gamma \vdash Q : [S = T] \quad \Gamma \vdash s : S}{\Gamma \vdash \{s \mid\mid Q : S = T\} : [(s : S) = (s [Q : S = T) : T)]}$$

• We haven't defined reflexivity:

$$\frac{\Gamma \vdash s : S}{\Gamma \vdash \overline{s : S} : \lceil (s : S) = (s : S) \rceil}$$

• We haven't defined respectfulness:

$$\frac{\Gamma \vdash S \text{ set } \Gamma; x : S \vdash T \text{ set}}{\Gamma \vdash \mathbf{R}x : S. \ T : [\forall y : S. \forall z : S. \\ (y : S) = (z : S) \Rightarrow T[y] = T[z]]$$

 And indeed, we are not going to add equations for any of those constants!

A core theory Equality and coercions Metatheoretic properies

What about canonicity ?

- We have introduced constants without equations!
- We could actually define coherence $\{s \mid Q: S = T\}$.
- But not reflexivity (s: S) or respect (Rx: S) because they have to be shown by induction on terms, not types.
- Are we back at square 1?
 We could have just added extensionality?

A core theory Equality and coercions Metatheoretic properies

Canonicity from consistency

Lemma (Canonicity from Consistency)

Suppose OTT is consistent, i.e. that there is no s such that $\mathcal{E} \vdash s: \mathbf{0}$. Then, for all normal S and s,

- if $\mathcal{E} \vdash S$ set then S is canonical;
- if $\mathcal{E} \vdash s : S$ then either s is canonical, or s is a proof.

A core theory Equality and coercions Metatheoretic properies

Consistency from the Extensional Theory

Theorem (Consistency)

There is no s such that $\mathcal{E} \vdash s : \mathbf{0}$.

SKETCHY PROOF SKETCH : Model OTT in ETT.

Corollary (Canonicity)

If $\mathcal{E} \vdash S$ set then S is canonical.

If $\mathcal{E} \vdash s : S$ then s is either canonical or a proof.

Metatheoretic properies

Induction for natural numbers

```
\operatorname{ind}_{P} : P[\operatorname{zero}] \to (\prod n : \operatorname{Nat} \cdot P[n] \to P[\operatorname{suc} n]) \to
               \Pi n: Nat. P[n]
```

```
ind<sub>P</sub> \mapsto
    \lambda pz ps n. rec n with
         \lambda b. if b then \lambda f h. ps (f \langle \rangle) (h \langle \rangle)
                                                  [?:P[suc(f\langle\rangle)] = P[\mathbf{t} \triangleleft f]\rangle
                   else \lambda f h. pz [?: P[zero] = P[\mathbf{f} \triangleleft f])
```

See paper on how to fill the ?s.

A core theory Equality and coercions Metatheoretic properies

Conservativity over ITT?

Definitional laws like

```
ind p pz ps zero \mapsto pz
```

do not hold definitionally!

Instead we have:

 $\operatorname{ind}_{P} pz \, ps \, \operatorname{zero} \mapsto pz \, [\cdots : P[\operatorname{zero}] = P[\operatorname{zero}] \,\rangle$

- Note that the coercion coerces definitionally equal types!
- We solve this problem by defining a quotation operation on normal forms, which eliminates unnecessary coercions.
- You have to modify definitional equality to do this. (not now!)

- We introduce OTT: an intensional Type Theory with extensional propositional equality.
- Can be implemented within existing ITT using a universe construction.
- We show via the embedding that OTT is normalizing, definitional equality and type checking are decidable
- Canonicity holds for non-propositional types this follows from the consistency of the extensional theory.
- OTT's definitional equality is conservative over ITT this requires a modified definitional equality.

- Carry out the details of the encoding in CIC.
- Definitionally redundant constructors?
- Show that ETT is a conservative extension of OTT.
- Coinductive data.
- Quotient types.
- Do we need the consistency of ETT?