
Näıve Type Theory

Thorsten Altenkirch

Functional Programming Laboratory
School of Computer Science
University of Nottingham

September 22, 2017

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 1 / 36

Sets vs Types

Quora : What is a type in type theory?
A2A. Good question. When we talk about mathematical objects we think of them
as elements of a type. This is particular important when we reason hypothetically,
as in given a natural number n . . . , or given a group G . . . In Type Theory all
objects are organised in types and it doesnt make sense to think of an object
without referring to its type. That is different from set theory, where there is an
idea of a set which just means any object. Only then we introduce predicates, e.g.
saying certain sets are actually representing numbers, etc. The type theoretic
approach is more disciplined and has the advantage that we can only talk about
elements of type wrt to the operations we have specified, i.e. we have no access
to the representation of a type. Again this is different from set theory where we
can distinguish different representations of the same mathematical object, e.g.
natural numbers can be represented as von Neumann numbers or as Zermelo
numbers with different properties, e.g. in the von Neumann encoding we have
2 ∈ 4 but not in Zermelo. These properties have nothing to do with the
properties of numbers they are properties of the representation. In Type Theory
different representation of the same mathematical object are indistinguishable and
in Homotopy Type Theory they are even considered as equal (via the univalence
principle).

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 3 / 36

Sets vs Types

Some history

1920 Zermelo Fraenkel Set Theory ZFC
1970 Extensional Type Theory ETT
1990 Intensional Type Theory ITT
2010 Homotopy Type Theory HoTT

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 4 / 36

Sets vs Types

Propositions vs Judgements

Set Theory

∀x ∈ N.P(x)

means
∀x .(x ∈ N)→ P(x)

Quantify over all sets.
a ∈ A is a proposition (dynamic).

Type Theory

Πx : N.P x

Can only quantify over elements of a given type.
a : A is a judgement (static).

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 5 / 36

Sets vs Types

Set Theory

Type Theory
=

Python

Haskell

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 6 / 36

Sets vs Types

Set Theory 101

A ⊆ B := ∀x .x ∈ A→ x ∈ B

A ∪ B := {x | x ∈ A ∨ x ∈ B}
A ∩ B := {x | x ∈ A ∧ x ∈ B}

⊆,∪,∩ are not operations on types

We use ∈ as a proposition.

The operations are intensional, they refer to elements as untyped
entities.

Not stable under isomorphism:

A ' B 6→ A ∪ C ' B ∪ C

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 7 / 36

Sets vs Types

Set Theory 101 in Type Theory

Choose U : Type
Define P U ≡ U → Prop

⊆ : P U → P U → Prop

A ⊆ B := Πx : U.Ax → B x

∪ : P U → P U → P U

A ∪ B := λx .Ax ∨ B x

∩ : P U → P U → P U

A ∩ B := λx .Ax ∧ B x

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 8 / 36

Sets vs Types

Type Theory 101

Products A× B

Sums A + B

Functions A→ B

Σ-types Σx : A.B x

Π-types Πx : A.B x

Π

→ ×

Σ

+

Extensionality

All operations on types are stable under isomorphism, e.g.

A ' B → A + C ' B + C

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 9 / 36

Sets vs Types

Propositions as Types (naive)

[[P =⇒ Q]] :≡ [[P]]→ [[Q]]

[[P ∧ Q]] :≡ [[P]]× [[Q]]

[[True]] :≡ 1

[[P ∨ Q]] :≡ [[P]] + [[Q]]

[[False]] :≡ 0

[[∀x : A.P(x)]] :≡ Πx : A.[[P(x)]]

[[∃x : A.P(x)]] :≡ Σx : A.[[P(x)]]

¬P :≡ P =⇒ False

P ⇔ Q :≡ (P =⇒ Q) ∧ (Q =⇒ P)

Why naive ?

HoTT refines this translation for ∨ and ∃.

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 10 / 36

Equality

Intensional equality
We inductively define

a =A b : Type for a, b : A

by the constructor
refla : a = a

We derive (by pattern matching):

symA : Πa,b:Aa =A b → b =A a
transA : Πa,b,c:Aa =A b → b =A c → a =A c
respA,B : Πf : A→ B.Πa,b:Aa =A b → f a =B f b

symA,a,a refla :≡ reflA

transA,a,a,c refla p :≡ p
respA,B f refla :≡ reflf a

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 12 / 36

Equality

Uniqueness of equality proofs

uepA : Πa,b:AΠp, q : a =A b.p =a=Ab q

uepA refla refla :≡ reflreflA

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 13 / 36

Equality

J,K and uep

J : ΠC : Πa,b:A(a = b)→ Type.
→ (Πh : Πa:ACa a refla)
→ Πa,b:AΠp : a = b.C p

J C h a a refla ≡ ha

[Hofmann, Streicher] : uep is not derivable from J.

K : ΠD : Πa:Aa = a→ Type.

Πa:ADa refla

→ Πa:AΠp : a = a.Da p

K D m refla ≡ ma

[homework] uep is derivable from J and K.
Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 14 / 36

Equality

About intensional equality

We cannot prove:
λn.n + 0 = λn.0 + n

because the only proof would involve reflf

with λn.n + 0 ≡ f ≡ λn.0 + n

The paradox of Intensional Type Theory (ITT)

ITT doesn’t offer any way to distinguish extensionally equal objects,
however it does not identify them either.

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 15 / 36

Equality

Equality in HoTT

Instead of defining equality inductively, every type comes with an
equality.

Equality should still satisfy some properties, eg reflexive, transitive,
congruence.

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 16 / 36

Equality

Inductive types and their equality
We define natural numbers (N : Type) inductively by constructors:

0 : N
suc : N→ N

This allows us to define programs like double : N→ N by pattern
matching:

double 0 :≡ 0
double (suc n) :≡ suc (suc (double n))

We define equality of natural numbers inductively

=N : N→ N→ Type

0= : 0 =N 0
suc= : Πm,n:Nm =N n→ sucm =N sucm

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 17 / 36

Equality

Coinductive types and their equality
We define streams (StreamA : Type where A : Type) coinductively by the
destructors:

head : StreamA→ A
tail : StreamA→ StreamA

This allows us to define programs from : N→ StreamN by copattern
matching:

head (from n) :≡ n
tail (from n) :≡ from (suc n)

We define equality of streams coinductively

=StreamA : StreamA→ StreamA→ Type

head= : Πs, s ′ : s =StreamA s ′ → head s = head s ′

tail= : Πs, s ′ : s =StreamA s ′ → tail s =StreamA tail s ′

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 18 / 36

Equality

The coinductive equality on streams corresponds to bisimulation.

Function types can be viewed as a coinductive type with application
as the destructor.

The corresponding equality corresponds to functional extensionality.

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 19 / 36

Equality

What is equality of types?

Easier question: What is equality of propositions?

Follow up: What is a proposition?

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 20 / 36

Equality

What is a proposition?

classical
Prop = Bool

Propositional extensionality : P = Q ⇔ (P ⇔ Q)

Type Theory (naive)
Prop = Type

Axiom of choice (AC) is provable.

(∀x : A.∃y : B.R x y)→ (∃f : A→ B.∀x : A.R x (f x)

Subset inclusion may not be injective.

{x : A | P x} = Σx : A.P x

Type Theory (HoTT)

Prop = {A : Type | ∀x , y : A.x = y}
Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 21 / 36

Equality

Propositions as Types (HoTT)

[[P =⇒ Q]] :≡ [[P]]→ [[Q]]

[[P ∧ Q]] :≡ [[P]]× [[Q]]

[[True]] :≡ 1

[[P ∨ Q]] :≡ ||[[P]] + [[Q]]||
[[False]] :≡ 0

[[∀x : A.P(x)]] :≡ Πx : A.[[P(x)]]

[[∃x : A.P(x)]] :≡ ||Σx : A.[[P]]||
¬P :≡ P =⇒ False

P ⇔ Q :≡ (P =⇒ Q) ∧ (Q =⇒ P)

where || || : Type→ Prop such that

||A|| → P ' A→ P for P : Prop

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 22 / 36

Equality

What is a proposition?

Type Theory (HoTT)

Prop ≡ {A : Type | ∀x , y : A.x = y}

AC not provable, implies excuded middle (Diaconescu)
Subset inclusion injective.
Retain propositional extensionality.
(P = Q)⇔ (P ⇔ Q)
Predicative Topos

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 23 / 36

Equality

What is a set?

Set ≡ {A : Type | ∀x , y : A.isProp (x = y)}

where isPropA ≡ ∀x , y : A.x = y

A = B ⇔ (A ' B) (A,B : Set)

A ' B :≡Σf : A→ B

g : B → A

η : Πx : B.f (g x) = x

ε : Πx : A.g (f x) = x

Bool = Bool is not a proposition.

Hence Set is not a set.

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 24 / 36

Equality

Equality of types (univalence)

A ' B :≡Σf : A→ B

g : B → A

η : Πy : B.f (g y) = y

ε : Πx : A.g (f x) = x

δ : Πx : A.η (f x) = f (ε x)

I write f (ε x) for resp f (ε x)

Asymmetric
τ : Πy : B.ε (g x) = g (η y)???

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 25 / 36

Higher Inductive Types

Defining the Integers as a HIT

Z : Type

0 : Z
suc : Z→ Z

pred : Z→ Z

sucpred : Πi : Z.suc (pred i) =Z i

predsuc : Πi : Z.pred (suc i) =Z i

isSet : Πi , j : Z.Πp, q : i =Z j → p =i=Zj q

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 27 / 36

Higher Inductive Types

Addition

+ : Z→ Z→ Z

0 + i :≡ i

suc j + i :≡ suc (i + j)

pred j + i :≡ pred (i + j)

sucpred j + i :≡ sucpred (j + i)

predsuc j + i :≡ predsuc (j + i)

(isSet p) + i :≡ isSet (p + j)

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 28 / 36

Higher Inductive Types

Steam hammer : truncation

isSet forces us to show that the codomain os a set.

What if we want to define functions from Z into non-sets?
E.g. S1 , Set . . .

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 29 / 36

Higher Inductive Types

Integers (revised)

Z : Type

0 : Z
suc : Z→ Z

pred : Z→ Z

sucpred : Πi : Z.suc (pred i) =Z i

predsuc : Πi : Z.pred (suc i) =Z i

coh : Πi : Z.sucpred (suc i) = suc (predsuc i)

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 30 / 36

Higher Inductive Types

We can still show that Z : Set using nf : Z→ Znf , with

0 : Znf

+ : N→ Znf

− : N→ Znf

We can eliminate into Types which are not sets.

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 31 / 36

Higher Inductive Types

Labelled Integers

Labelled natural numbers are lists (List : Type→ Type)

That’s the free monoid over a type.

We can do the same with integers.

Leading to the free group FG : Type→ Type.

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 32 / 36

Higher Inductive Types

Free Group

FG : Type→ Type

0 : FGA

suc : A→ FGA→ FGA

pred : A→ FGA→ FGA

sucpred : Πi : FGA.Πa : A.suc a (pred a i) =FG Ai

predsuc : Πi : FGA.Πa : A.pred a (suc a i) =FG Ai

coh : Πi : FGA.Πa : A.sucpred a (suc a i) = suc a (predsuc a i)

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 33 / 36

Higher Inductive Types

Open problem

Given A : Set can you show that FG A : Set?

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 34 / 36

Epilogue

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 35 / 36

Epilogue

Executive Summary

Type Theory unlike Set Theory natively supports abstraction via
information hiding.

The intuitions underlying Type Theory are closely related to
functional programming.

Propositions are explained via the propositions as types translation.

A proposition is a type with at most one element.

Equalities are packaged with the type:
I The equality of inductive types is the inductively defined congruence of

constructors.
I The equality of coinductive types is the coinductively defined

congruence of destructors.
I The equality of types is weak equivalence (coherent isomorphism).

Inductively defined types can also contain constructors for equalities
leading to Higher Inductive Types (HITs).

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 36 / 36

	Sets vs Types
	Equality
	Higher Inductive Types
	Epilogue

