Naive Type Theory

Thorsten Altenkirch

Functional Programming Laboratory
School of Computer Science
University of Nottingham

September 22, 2017

Thorsten Altenkirch (Nottingham) Naive S-REPLS

NSy

You guys are both my witnesses... He insinuated that
ZFC set theory is superior to Type Theory!

Sets vs Types

Quora : What is a type in type theory?

A2A. Good question. When we talk about mathematical objects we think of them
as elements of a type. This is particular important when we reason hypothetically,
as in given a natural number n ..., or given a group G ...In Type Theory all
objects are organised in types and it doesnt make sense to think of an object
without referring to its type. That is different from set theory, where there is an
idea of a set which just means any object. Only then we introduce predicates, e.g.
saying certain sets are actually representing numbers, etc. The type theoretic
approach is more disciplined and has the advantage that we can only talk about
elements of type wrt to the operations we have specified, i.e. we have no access
to the representation of a type. Again this is different from set theory where we
can distinguish different representations of the same mathematical object, e.g.
natural numbers can be represented as von Neumann numbers or as Zermelo
numbers with different properties, e.g. in the von Neumann encoding we have

2 € 4 but not in Zermelo. These properties have nothing to do with the
properties of numbers they are properties of the representation. In Type Theory
different representation of the same mathematical object are indistinguishable and
in Homotopy Type Theory they are even considered as equal (via the univalence
principle).

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 3 /36

Sets vs Types

Some history

1920 Zermelo Fraenkel Set Theory ZFC

1970 Extensional Type Theory ETT

1990 Intensional Type Theory ITT

2010 Homotopy Type Theory HoTT

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017

4/36

Sets vs Types

Propositions vs Judgements

Set Theory
Vx € N.P(x)

means
Vx.(x € N) = P(x)

Quantify over all sets.
a € Ais a proposition (dynamic).

Type Theory
Mx : N.Px

Can only quantify over elements of a given type.
a: Ais a judgement (static).

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 5/ 36

Sets vs Types

Set Theory Python

Type Theory Haskell

Thorsten Altenkirch (Nottingham) Naive S-REPLS

Set Theory 101

ACB = V¥xxeA—>xeB
AUB = {x|xeAVxeB}
ANB = {x|xeAAxec B}

e C,U,N are not operations on types
@ We use € as a proposition.

@ The operations are intensional, they refer to elements as untyped
entities.

@ Not stable under isomorphism:

A~BAAUC~BUC

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 7 /36

Set Theory 101 in Type Theory

Choose U : Type
Define P U = U — Prop

U
AUB

_N-
ANB

Thorsten Altenkirch (Nottingham)

PU—PU— Prop
MNx: U.Ax — Bx

PU—-PU—-PU
Ax.AxV Bx

PU—-PU—-PU
Ax.Ax A Bx

Naive S-REPLS September 22, 2017

8 /36

Sets vs Types

Type Theory 101

Products Ax B

Sums A+ B A >
Functions | A— B / /
>-types | Xx:A.Bx N h
M-types | MNx:A.Bx - x +

Extensionality

All operations on types are stable under isomorphism, e.g.

A~B A+ C~B+C

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017

9/36

Sets vs Types

Propositions as Types (naive)

P = Q]
[P AQJ
[True]

[PV Q]
[False]

[vx : A.P(x)]
[3x: A.P(X)]
-P

P& @

Why naive ?

[Pl — [T

[P1 < [@]

1

P11+l

0

Mx : AJP(x)]

Yx: AJP(X)]

P = False

(P = QAN (Q = P)

HoTT refines this translation for VV and 3.

Thorsten Altenkirch (Nottingham)

Naive S-REPLS September 22, 2017

10 / 36

Equality

Intensional equality
We inductively define

a=ab: Type fora,b: A

by the constructor
refl, :a=a

We derive (by pattern matching):

Sym, |_|a7b;Aa =A b—b =A a
transy I'Ia,b,C:Aa =ab—>b=pc—a=ac
respap: [f :A—= Bllyppa=ab—fa=gfb

symp , ,refl, =refly
transa ;5 crefl, pi=p
respy g frefl, =refls,

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017

12 / 36

Uniqueness of equality proofs

Uepy - I_Ia,b:AI—]pa g:a=pb.p =a=,b 4

uep 4 refl, refl, ;= reflyeq,

Thorsten Altenkirch (Nottingham) Naive S-REPLS

J,K and uep

J:NC: N, pa(a=b) — Type.
— (Mh:NyaC,arefly)
— na7b;A|_|p .a= bCp
JCh,,refl; = h,

[Hofmann, Streicher] : uep is not derivable from J.

K :TD : M, a2 =a— Type.
My oD, refl,
= MN,allp:a=aD,p

KD mrefl, = m,

[homework] uep is derivable from J and K.
Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017

14 / 36

Equality

About intensional equality

We cannot prove:
Ann+0=An0+n

because the only proof would involve refl¢
with A\n.n+0=f=An0+n

The paradox of Intensional Type Theory (ITT)

ITT doesn't offer any way to distinguish extensionally equal objects,
however it does not identify them either.

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 15 / 36

Equality in HoTT

@ Instead of defining equality inductively, every type comes with an
equality.

@ Equality should still satisfy some properties, eg reflexive, transitive,
congruence.

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 16 / 36

Equality

Inductive types and their equality
We define natural numbers (N : Type) inductively by constructors:

0 N
suc: N —- N

This allows us to define programs like double : N — N by pattern
matching:

double 0 =0
double (suc n) := suc (suc (double n))

We define equality of natural numbers inductively

_=N-:N—= N — Type
0= :0=n0

suc™ : Iy p.nm =N n — suc m =y suc m

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017

17 / 36

Equality

Coinductive types and their equality

We define streams (Stream A : Type where A : Type) coinductively by the
destructors:
head : Stream A — A

tail : Stream A — Stream A

This allows us to define programs from : N — Stream N by copattern
matching:

head (from n) := n
tail (from n) := from (suc n)

We define equality of streams coinductively

_ =Stream A — . Stream A — Stream A — Type

head™: Ms,s’ : s =gtrecam A S — head s = head s’
tail= :Ms,s’ : s =Stream A S — tail S =giream A tail s’

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 18 / 36

Equality

@ The coinductive equality on streams corresponds to bisimulation.

@ Function types can be viewed as a coinductive type with application
as the destructor.

@ The corresponding equality corresponds to functional extensionality.

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 19 / 36

What is equality of types?

@ Easier question: What is equality of propositions?

@ Follow up: What is a proposition?

Thorsten Altenkirch (Nottingham) Naive S-REPLS

What is a proposition?

classical
Prop = Bool

Propositional extensionality : P = Q < (P < Q)
Type Theory (naive)
Prop = Type

@ Axiom of choice (AC) is provable.
(Vx:AJy :B.Rxy) — (3f : A— BV¥x: ARx(f x)
@ Subset inclusion may not be injective.

{x:A|Px} =Xx:APx

Type Theory (HoTT)
Prop = {A: Type | Vx,y : Ax =y}

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 21 /36

Propositions as Types (HoTT)

[P = QI
[P A Q]
[True]

[PV Q]
[False]

[vx : A.P(x)]
[3x : A.P(x)]
_‘P

P& Q

[Pl — [l

[P] < [Q]

1

|[PT -+ [l

0

Mx : AJP(x)]

I=x : AJP]

P — False

(P = QN(Q = P)

where |_| : Type — Prop such that

Al = P~A—P for P : Prop

Thorsten Altenkirch (Nottingham)

Naive S-REPLS September 22, 2017

22/36

What is a proposition?

Type Theory (HoTT)

Prop = {A: Type | Vx,y : Ax =y}

@ AC not provable, implies excuded middle (Diaconescu)
@ Subset inclusion injective.
@ Retain propositional extensionality.

(P=Q) = (P Q)

@ Predicative Topos

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 23 /36

Equality

What is a set?

Set = {A: Type | Vx, y : AiisProp (x = y)}
where isPropA=Vx,y : Ax =y

A=B& (A~B) (A B:Set)

A~B:=¥f:A— B
g:B—-A
n:MNx:B.f(gx)=x
e:MNx:Ag(fx)=x

@ Bool = Bool is not a proposition.

@ Hence Set is not a set.

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017

24 /36

Equality of types (univalence)

A~B:=¥f:A— B

g:B—A
:MNy:B.f(gy)=y
Mx:Ag(fx)=x
:Nx : A (f x) = £ (ex)

S

o | write f (ex) for resp f (€ x)
@ Asymmetric
T:My:Be(gx)=g(ny)???

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017

25 / 36

. XINEIXIIETIETIETIAIIY >
L ERTIEAE XN XN XY XTI
XY AXEINETAIAIEIEIIAIIXY X XITAIT
TIRXXE XY Ny MANXNS - TIAIIY - 23~ TT
XYM IXEOEIXIOXEMETIXII XY X TIAIIX A
IXEAIN ¥ A~X A YAMAY A [OoIy~ye OXIIXIT
I MDD 11X OXMEOEOSTISI~AY AL A AxY~y
XX _YXIIY SXAMANY o~ o~ 3 M~Y~ AXII~ IIXIIXIT
oxy I ~ Y DY SOXOZOZIXOANY _IIX _II2 % ANY
OXIEASIY. oXoxXoOAy o~ A JIo¥x X SHANZOEONT
~MAXY I AMIOY [IXAY OETNEINEOYEIXEX DANNIINMA ~ o~ My~
X ¥ > II AX ~MIMAY A~ I~ 3 AXO IIX O IO Ox
~ o~ NYIAXMIENEXEXETANENENENEXY DO AEEXMYXY YA
II IMEXEX Y IXNONIIEXEEXEXEXNANISXSAYAYXIT IT I [IAXIE
A~ I O ODAOEAXAXANAIENENETIIEXEIININIINMA A &Y o~ MY
1163 | D NS DI) DD § (5 | (D P XEAEXY IIX I IT O IIX
AXX ¥ IINIIXIT IIEXXYAY O~TISX oX X 3 AX
OMIT IIXXAY ST . SAXAXENEND . 1T IO I
XA X I~ AIIY XY oXIIXay STIEANNMIINII MXMAYX Ny ~ 3
My IOXx X [OX IIXOxy IXXITATIAXEXY TAX I~ IIX_AXAI
XYy N XNIY EXEXANEXY SOSOANI~OY ~IIY _TOAY XM XY
MMAIIXIT Y~y IIAI AAXTNES ALY YXy X~y
~ Y X ANXIIE YA MY IATISIOXIIY ~ IIX~® IIXI IIX
I~ IIX ~IIXI o IOXIOxIr XIIE TAY YN A
EX O MME ~MIY - ~X[IEINE X CIHETIXIIN A M~ _IIAII ¥
I ~II Imx 1I MIINMTITIR AR XY - HNITY. >y - cH
=Py ANy MY)T 11 IMA~X ITXII X
[~ II II~X 11 IMIIATIMIIETI I AT X A DD ~ T
AT Y . XX 103) ITA X Ixx
[E=ps NIIAITY I SXIIAIIX ~ A
11593 > MY XIIXITITETIX IT >IIX
~IXY II IT o A~
~MIvy -)3 SIIXIIXY
XIIAII~ XIS SNROXIEARY
TAZAMANITNIYAAEAESS
YIIEXMXEX M

Defining the Integers as a HIT

Z : Type
0:%

suc:Z — 7
pred : Z — Z

sucpred : i : Z.suc (pred i) =z i
predsuc : i : Z.pred (suci) =z i

isSet : Mi,j : Z.Np,q:i=z7j— p=i=,; q

Thorsten Altenkirch (Nottingham) Naive S-REPLS

Addition

‘L =7 =7

0+i:=1i
sucj + i :=suc (i +j)
predj + i := pred (i + j)

sucpred j + i := sucpred (j + i)
predsucj + i := predsuc (j + /)

(isSet p) + i := isSet (p + J)

Thorsten Altenkirch (Nottingham) Naive S-REPLS

Higher Inductive Types

Steam hammer : truncation

@ isSet forces us to show that the codomain os a set.

@ What if we want to define functions from Z into non-sets?
Eg. S', Set...

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017

29 / 36

Higher Inductive Types

Integers (revised)

Z : Type

0:7%Z
suc:Z — 74
pred : Z — Z

sucpred : i : Z.suc (pred i) =z i
predsuc : Mi : Z.pred (suci) =z i

coh : Ti : Z.sucpred (suc i) = suc (predsuc /)

Thorsten Altenkirch (Nottingham) Naive S-REPLS

Higher Inductive Types

o We can still show that Z : Set using nf : Z — Z"", with

0: 7z
4+ N z»
— Nz~

@ We can eliminate into Types which are not sets.

Thorsten Altenkirch (Nottingham) Naive S-REPLS

Labelled Integers

o Labelled natural numbers are lists (List : Type — Type)
@ That's the free monoid over a type.
@ We can do the same with integers.

o Leading to the free group FG : Type — Type.

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 32 /36

Free Group

FG : Type — Type
0:FGA

suc: A—>FGA— FGA
pred: A—FGA— FGA

sucpred : Mi : FGA.Ma: Assuca(predai) =pg Ai
predsuc : i : FGA.Ma: A.preda(sucai) =pg Ai

coh : MNi: FG A.Ma : Assucpred a(sucai) = suc a(predsucai)

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017

33 /36

Open problem

@ Given A : Set can you show that FG A : Set?

Thorsten Altenkirch (Nottingham) Naive S-REPLS

Epilogue

THORSTE A pENKIRCY

Thorsten Altenkirch (Nottingham) Naive S-REPLS

Epilogue

Executive Summary

@ Type Theory unlike Set Theory natively supports abstraction via
information hiding.

@ The intuitions underlying Type Theory are closely related to
functional programming.

@ Propositions are explained via the propositions as types translation.
@ A proposition is a type with at most one element.
o Equalities are packaged with the type:
» The equality of inductive types is the inductively defined congruence of
constructors.
» The equality of coinductive types is the coinductively defined
congruence of destructors.
» The equality of types is weak equivalence (coherent isomorphism).
@ Inductively defined types can also contain constructors for equalities

leading to Higher Inductive Types (HITs).

Thorsten Altenkirch (Nottingham) Naive S-REPLS September 22, 2017 36 / 36

	Sets vs Types
	Equality
	Higher Inductive Types
	Epilogue

