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What is equality?

Intensional Type Theory:
I Types are defined by their elements.
I Equality type reflects judgmental equality.
I Lack of extensionality.

Homotopy Type Theory
I Types are defined by elements and equalities.
I Equality types provide access to the equality structure.
I Very extensional
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Higher Inductive Types

Inductive Types:
I Value constructors: to construct elements
I Equality constructors: to construct equalities

Applications:
I Synthetic homotopy theory:

F Definition of the circle (S1)
F Higher spheres (Sn)
F Torus, . . .

I Set level structures:
F Cauchy Reals
F Partiality Monad
F Intrinsic Type Theory
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Quotient Inductive Inductive Types

Set level HITs : Quotient Inductive Types (QITs)

HITs with set or propositional truncation constructors.

Inductive-inductive types (IITs): define inductive types that depend
on each other, e.g.

A : Set,B : A→ Set

QITs + IITs = QIITS.

All the set level examples are QIITs.
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The Cauchy Reals

Standard definition: quotient converging sequences. Identify
converging sequences whose difference converges to 0.

Try to show that the reals are Cauchy complete: every converging
sequence of reals has a limit.

To show this we need to commute quotients and functions.

In general this is equivalent to the axiom of choice.

HoTT book: Define the reals as the Cauchy completion of the
rationals.

This requires a QIIT since we define a equivalence relation at the
same time.

We avoid using axiom of choice!

Assuming AC the two definitions are equivalent.
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The Partiality Monad

Given A : Set define A⊥ : Set the set of partial computations over A.

Old approach:
I coinductively define delayed computation as the terminal coalgebra of

F X = A + X .
I Quotient delayed computation by those that differ only by a finite delay.

We would like to show:
I (−)⊥ is a monad (computational effect).
I A⊥ is an ω-CPO (has directed least upper bounds and a least element).

It seems that we need AC again.
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The Partiality Monad as a QIIT

Instead we define A⊥ as the (underlying set) of the free ω-CPO.

This is a ω-CPO by definition.

It is a monad by abstract nonsense (composition of a free and
forgetful functor).

We are using a QIIT to define the elements, the order relation and
the equality at the same time.

Assuming AC we can show that this definition is equivalent to the
previous one.
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A simplified example: permutable trees

Given A : Set let us define the type of permutable trees T (A) : Set of
A-branching trees where we identify trees upto permutation of
subtrees.

Define A-branching trees T0(A) : Set inductively

leaf : T0(A)

node : (A→ T0(A))→ T0(A)

We define the permutability relation

∼ : T0(A)→ T0(A)→ Prop

inductively by

perm : ∀π : A = A.node(f ◦ π) ∼ node(f )

leaf= : leaf ∼ leaf

node= : (∀x : A.node(f (x)) ∼ node(g(x)))→ node(f ) ∼ node(g)
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A simplified example: permutable trees

Define T (A) = T0(A)/ ∼.

Can we derive
node : (A→ T (A))→ T (A)

such that
[node(f )] = node([ ] ◦ f )

Using AC

[node(f )] = node[f ]A→∼ (AC )

= node([ ] ◦ f ) (node=)

Derive node using surjectivity of [ ] and unique choice.
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Permutable trees as a QIT

Define permutable A-branching trees T (A) : Set inductively

leaf : T (A)

node : (A→ T (A))→ T (A)

perm : ∀π : A = A.node(f ◦ π) = node(f )

Using AC we can show that this is equivalent to the quotient
definition.

However, we can completely avoid AC in this development.
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QITs to avoid choice

QI(I)Ts are a constructive principle that enables us to avoid
unnecessary uses of AC.

Indeed, Lumsdaine and Shulman given an example of a QIT that
cannot be derived without AC.

Semantics of higher inductive types

Peter LeFanu Lumsdaine, Mike Shulman. 2017.
arXiv:1705.07088 [math.LO]
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Type Theory in Type Theory as a QIIT

Con : Set

Ty : Con→ Set

Tm : ΠΓ : Con.Ty(Γ)→ Set

Tms : Con→ Con→ Set

...

Pi : ΠA : Ty(Γ),B : Ty(Γ.A).Ty(Γ)

...

lam : Tm(Γ.A,B)→ Tm(Γ,Pi(A,B))

app : Tm(Γ,Pi(A,B))→ Tm(Γ.A,B)

...

β : Πt : Tm(Γ.A,B).lam(app(f )) = f
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Type Theory in Type Theory

Intrinsic syntax (no preterms).

This is the initial category with families by definition.

Could be defined as a quotient type since there are no higher
constructors.

However, this is very laborious!

Since the QIIT is truncated we cannot define the standard model in
Set.

Type Theory in Type Theory using Quotient Inductive Types

Thorsten Altenkirch and Ambrus Kaposi. 2016. POPL.
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Codes for QIITs
Kaposi and Kovac propose to use TTinTT to specify QIITs.
They restrict Π-types so that we can only define 1st order functions:

U : Ty(Γ)

El : Tm(Γ,U)→ Ty(Γ)

Pir : ΠA : Tm(Γ,U),B : Ty(Γ.El(A)).Ty(Γ)

To allow non-recursive arguments they add a higher (and large):
constructor:

Pin : ΠA : SetB : A→ Ty(Γ).Ty(Γ)

They also add equality types.
We only need application for both Pi-types and transport for equality.
Contexts in this type theory correspond to QIITs, e.g. natural
numbers

ΓN = N : U, z : El(N), s : Pir (N,El(N))
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A universal QIIT?

We can define an interpretation of this type theory that assigns
categories to contexts,

We can also derive an object in this category which is the term
algebra.

Conjecture: this is the initial object.

Conjecture: The QIIT defining this type theory is universal (all other
QIITs can be derived from it).
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Going further

Is there a simple universal QIIT?

Can we define a higher syntax of Type Theory as a HIIT (and define
the set-model)?

What are applications of proper HITs (and HIITs) outside of synthetic
homotopy theory?
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