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BCTCS 2006

Stop thinking about bottoms
when writing programs . . .

Thorsten Altenkirch
University of Nottingham

BCTCS 06 – p.1/??
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Partiality is an effect

A⊥ — partial computations over A.

Computational monad

η : A→ A⊥ — embed values into partial computations.

⊥ : A⊥ — non-terminating computation.

A 6= A + 1 !

Given f : (A→ B⊥)→ (A→ B⊥)
compute fix(f ) : A→ B⊥
satisfying fix(f ) = f (fix(f )).

We need that f is continuous.
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Capretta’s solution

Defining the Delay monad coinductively:

Delay : Set→ Set

η : A→ Delay(A)

later :∞Delay(A)→ Delay(A)

Divergent computation:

⊥ = later(⊥)

Want to identify computations that differ in a finite number of later .

Paper

Venanzio Capretta
General Recursion via Coinductive Types
Logical Methods in Computer Science, 2005
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Weak bisimilarity

Inductively define

↓ : A⊥ → A→ Prop

η(a) ↓ a
p ↓ a→ later(p) ↓ a

Equivalence relation:

≈ : Delay(A)→ Delay(A)→ Prop

p ≈ q := Πa:A(p ↓ a↔ q ↓ a)
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Quotient types

Capretta used setoids = a type + an equivalence relation.

In 2005 we (A.,Capretta,Uustalu) suggested to use quotient types

A⊥ :≡ Delay(A)/ ≈

We never published a paper about this . . .
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Desired properties

(−)⊥ should be a monad.

>>=: A⊥ → (A→ B⊥)→ B⊥

A⊥ should be a ω-CPO.⊔
: Πf :N→A⊥(Πn:Nf (n) v f (n + 1))→ A⊥

Thorsten Altenkirch (Nottingham) Partiality, revisited May 26, 2016 7 / 13



TYPES 2015

Paper based on TYPES talk

James Chapman, Tarmo Uustalu and Niccolò
Quotienting the Delay Monad by Weak Bisimilarity
Theoretical Aspects of Computing – ICTAC 2015

Using countable axiom of choice ACω:

(Πx : N.∃y : B.R(x , y)→ (∃f : N→ B.Πx :NR(x , f (x)))

they show that (−)⊥ is a monad.

∃x : A.Φ(x) :≡ ||Σx : A.Φ(x)||
ACω is not provable in Type Theory.

But it can be constructively justified.
(unlike general AC)
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Dejavue ?

Similar problem with the Cauchy Reals.

S := Σf : N→ Q.Πε : Q.ε > 0→ ∃n : N.|f (n + 1)− f (n)| < ε

(f ,−) ∼ (g ,−) :≡ Πε : Q.ε > 0→ ∃n.n ∈ N.|f (n)− g(n)| < ε

R :≡ S/ ∼

Cannot prove in Type Theory that R is Cauchy complete.
Every convergent sequence of reals has a limit.

Unless we assume countable choice.
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HITs to the rescue

Using (set-truncated) higher inductive types we can avoid ACω.

We define R as:

η : Q→ R
Every convergent sequence in R→ R

We define
I the elements,
I the order relation,
I and equality

at the same time.

We call this a
Quotient Inductive Type
since it isn’t higher dimensional in the sense of HoTT.
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Defining A⊥ as a QIT

A⊥ : Set

v : A⊥ → A⊥ → Prop

⊥ : A⊥

η : A→ A⊥⊔
: Πf :N→A⊥(Πn:Nf (n) v f (n + 1))→ A⊥

d v d ⊥ v d

⊔
(f , p) v d

Πn:Nf (n) v d

Πn:Nf (n) v d⊔
(f , p) v d

d v d ′ d ′ v d

d = d ′
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Results

(−)⊥ is a monad.
formalized in Agda

A⊥ is non-trivial.
⊥ 6= η(a)

A⊥ is an ω-CPO
trivial
Indeed we define A⊥ as the free ω-CPO over A.

Assuming ACω the definition is equivalent to the previous one.

Case study:
Danielsson has ported the Agda code related to his paper
Operational Semantics using the Partiality Monad
to the new definition.
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