Partiality, Revisited

Thorsten Altenkirch

Functional Programming Laboratory School of Computer Science University of Nottingham

jww Paolo Capriotti, Nils Anders Danielsson, Nicolai Kraus

May 26, 2016

BCTCS 2006

Stop thinking about bottoms when writing programs ...

Thorsten Altenkirch University of Nottingham

BCTCS 06 - p.1

Partiality is an effect

- A_{\perp} partial computations over A.
- Computational monad
- $\eta: A \rightarrow A_{\perp}$ embed values into partial computations.
- $\perp : A_{\perp}$ non-terminating computation.
- $A \neq A + 1$!
- Given $f : (A \to B_{\perp}) \to (A \to B_{\perp})$ compute $fix(f) : A \to B_{\perp}$ satisfying fix(f) = f(fix(f)).
- We need that *f* is continuous.

Capretta's solution

• Defining the Delay monad coinductively:

 $\textit{Delay}: \textbf{Set} \rightarrow \textbf{Set}$

$$\eta: A
ightarrow \textit{Delay}(A)$$

later : $\infty \textit{Delay}(A)
ightarrow \textit{Delay}(A)$

• Divergent computation:

 $\perp = later(\perp)$

• Want to identify computations that differ in a finite number of later.

Paper

Venanzio Capretta General Recursion via Coinductive Types Logical Methods in Computer Science, 2005

Thorsten Altenkirch (Nottingham)

Weak bisimilarity

• Inductively define

 $\downarrow : A_{\perp} \to A \to \mathsf{Prop}$ $\eta(a) \downarrow a$ $p \downarrow a \to later(p) \downarrow a$

• Equivalence relation:

$$pprox : Delay(A)
ightarrow Delay(A)
ightarrow \mathbf{Prop}$$

$$p \approx q := \prod_{a:A} (p \downarrow a \leftrightarrow q \downarrow a)$$

Quotient types

- Capretta used setoids = a type + an equivalence relation.
- In 2005 we (A., Capretta, Uustalu) suggested to use quotient types

$$A_{\perp} :\equiv Delay(A)/\approx$$

• We never published a paper about this

Desired properties

• $(-)_{\perp}$ should be a monad.

$$>>=:A_{\perp} \rightarrow (A \rightarrow B_{\perp}) \rightarrow B_{\perp}$$

• A_{\perp} should be a ω -CPO.

$$: \Pi_{f:\mathbb{N}\to A_{\perp}}(\Pi_{n:\mathbb{N}}f(n) \sqsubseteq f(n+1)) \to A_{\perp}$$

TYPES 2015

Paper based on TYPES talk

James Chapman, Tarmo Uustalu and Niccolò Quotienting the Delay Monad by Weak Bisimilarity Theoretical Aspects of Computing – ICTAC 2015

• Using countable axiom of choice AC_{ω} :

 $(\Pi x: \mathbb{N}.\exists y: B.R(x, y) \to (\exists f: \mathbb{N} \to B.\Pi_{x:\mathbb{N}}R(x, f(x)))$

they show that $(-)_{\perp}$ is a monad.

- $\exists x : A.\Phi(x) :\equiv ||\Sigma x : A.\Phi(x)||$
- AC_{ω} is not provable in Type Theory.
- But it can be constructively justified. (unlike general AC)

Dejavue ?

• Similar problem with the Cauchy Reals.

$$S := \Sigma f : \mathbb{N} \to \mathbb{Q}. \Pi \epsilon : \mathbb{Q}. \epsilon > 0 \to \exists n : \mathbb{N}. |f(n+1) - f(n)| < \epsilon$$

 $(f, -) \sim (g, -) :\equiv \Pi \epsilon : \mathbb{Q}. \epsilon > 0 \to \exists n. n \in \mathbb{N}. |f(n) - g(n)| < \epsilon$
 $\mathbb{R} :\equiv S/\sim$

- Cannot prove in Type Theory that ℝ is Cauchy complete.
 Every convergent sequence of reals has a limit.
- Unless we assume countable choice.

Homotopy Type Theory

Univalent Foundations of Mathematics

HITs to the rescue

- Using (set-truncated) higher inductive types we can avoid AC_{ω} .
- We define \mathbb{R} as:

 $\eta:\mathbb{Q}\to\mathbb{R}$ Every convergent sequence in $\mathbb{R}\to\mathbb{R}$

- We define
 - the elements,
 - the order relation,
 - and equality

at the same time.

We call this a

Quotient Inductive Type

since it isn't higher dimensional in the sense of HoTT.

Defining A_{\perp} as a QIT

 A_{\perp} : **Set** $\sqsubseteq : A_{\perp} \rightarrow A_{\perp} \rightarrow \mathsf{Prop}$ $\perp : A_{\perp}$ $\eta: A \to A_{\perp}$ $| : \Pi_{f:\mathbb{N}\to\mathcal{A}_{\perp}}(\Pi_{n:\mathbb{N}}f(n) \sqsubseteq f(n+1)) \to \mathcal{A}_{\perp}$ $\bigsqcup(f,p)\sqsubseteq d$ $\Pi_{n:\mathbb{N}}f(n) \sqsubseteq d$ $\overline{\Pi_{n:\mathbb{N}}f(n)} \sqsubseteq d$ $\perp \sqsubseteq \overline{d}$ $d \sqsubset d$ $|(f,p) \sqsubseteq d$ $d \sqsubseteq d' \qquad d' \sqsubseteq d$ d = d'

Results

- $(-)_{\perp}$ is a monad. formalized in Agda
- A_{\perp} is non-trivial. $\perp
 eq \eta(a)$
- A_⊥ is an ω-CPO trivial Indeed we define A_⊥ as the free ω-CPO over A.
- Assuming AC_{ω} the definition is equivalent to the previous one.
- Case study:

Danielsson has ported the Agda code related to his paper *Operational Semantics using the Partiality Monad* to the new definition.