Partiality, Revisited

Thorsten Altenkirch

Functional Programming Laboratory
School of Computer Science
University of Nottingham
jww Paolo Capriotti, Nils Anders Danielsson, Nicolai Kraus

May 26, 2016

Stop thinking about bottoms when writing programs ...

Thorsten Altenkirch
University of Nottingham

Partiality is an effect

- A_{\perp} - partial computations over A.
- Computational monad
- $\eta: A \rightarrow A_{\perp}$ - embed values into partial computations.
- \perp : A_{\perp} - non-terminating computation.
- $A \neq A+1$!
- Given $f:\left(A \rightarrow B_{\perp}\right) \rightarrow\left(A \rightarrow B_{\perp}\right)$ compute fix $(f): A \rightarrow B_{\perp}$ satisfying fix $(f)=f(f i x(f))$.
- We need that f is continuous.

Capretta's solution

- Defining the Delay monad coinductively:

$$
\text { Delay : Set } \rightarrow \text { Set }
$$

$$
\begin{aligned}
& \eta: A \rightarrow \operatorname{Delay}(A) \\
& \text { later }: \infty \operatorname{Delay}(A) \rightarrow \operatorname{Delay}(A)
\end{aligned}
$$

- Divergent computation:

$$
\perp=\operatorname{later}(\perp)
$$

- Want to identify computations that differ in a finite number of later.

Paper
 Venanzio Capretta
 General Recursion via Coinductive Types
 Logical Methods in Computer Science, 2005

Weak bisimilarity

- Inductively define

$$
\begin{aligned}
& \downarrow: A_{\perp} \rightarrow A \rightarrow \text { Prop } \\
& \eta(a) \downarrow a \\
& p \downarrow a \rightarrow \operatorname{later}(p) \downarrow a
\end{aligned}
$$

- Equivalence relation:

$$
\begin{aligned}
& \approx: \operatorname{Delay}(A) \rightarrow \operatorname{Delay}(A) \rightarrow \text { Prop } \\
& p \approx q:=\Pi_{a: A}(p \downarrow a \leftrightarrow q \downarrow a)
\end{aligned}
$$

Quotient types

- Capretta used setoids $=$ a type + an equivalence relation.
- In 2005 we (A.,Capretta,Uustalu) suggested to use quotient types

$$
A_{\perp}: \equiv \operatorname{Delay}(A) / \approx
$$

- We never published a paper about this ...

Desired properties

- $(-)_{\perp}$ should be a monad.

$$
\gg=: A_{\perp} \rightarrow\left(A \rightarrow B_{\perp}\right) \rightarrow B_{\perp}
$$

- A_{\perp} should be a ω-CPO.

$$
\bigsqcup: \Pi_{f: \mathbb{N} \rightarrow A_{\perp}}\left(\Pi_{n: \mathbb{N}} f(n) \sqsubseteq f(n+1)\right) \rightarrow A_{\perp}
$$

TYPES 2015

Paper based on TYPES talk

James Chapman, Tarmo Uustalu and Niccolò Quotienting the Delay Monad by Weak Bisimilarity Theoretical Aspects of Computing - ICTAC 2015

- Using countable axiom of choice AC_{ω} :

$$
\left(\Pi x: \mathbb{N} \cdot \exists y: B \cdot R(x, y) \rightarrow\left(\exists f: \mathbb{N} \rightarrow B \cdot \Pi_{x: \mathbb{N}} R(x, f(x))\right)\right.
$$

they show that $(-)_{\perp}$ is a monad.

- $\exists x: A . \Phi(x): \equiv\|\Sigma x: A . \Phi(x)\|$
- AC_{ω} is not provable in Type Theory.
- But it can be constructively justified. (unlike general AC)

Dejavue?

- Similar problem with the Cauchy Reals.

$$
\begin{aligned}
& S:=\Sigma f: \mathbb{N} \rightarrow \mathbb{Q} . \Pi \epsilon: \mathbb{Q} . \epsilon>0 \rightarrow \exists n: \mathbb{N} .|f(n+1)-f(n)|<\epsilon \\
& (f,-) \sim(g,-): \equiv \Pi \epsilon: \mathbb{Q} \cdot \epsilon>0 \rightarrow \exists n . n \in \mathbb{N} .|f(n)-g(n)|<\epsilon \\
& \mathbb{R}: \equiv S / \sim
\end{aligned}
$$

- Cannot prove in Type Theory that \mathbb{R} is Cauchy complete. Every convergent sequence of reals has a limit.
- Unless we assume countable choice.

Homotopy Type Theory

Unimalent Foundations of Mathematics

HITs to the rescue

- Using (set-truncated) higher inductive types we can avoid $A C_{\omega}$.
- We define \mathbb{R} as:

$$
\begin{aligned}
& \eta: \mathbb{Q} \rightarrow \mathbb{R} \\
& \text { Every convergent sequence in } \mathbb{R} \rightarrow \mathbb{R}
\end{aligned}
$$

- We define
- the elements,
- the order relation,
- and equality
at the same time.
- We call this a

Quotient Inductive Type since it isn't higher dimensional in the sense of HoTT.

Defining A_{\perp} as a QIT

$A_{\perp}:$ Set
$\sqsubseteq: A_{\perp} \rightarrow A_{\perp} \rightarrow$ Prop
$\perp: A_{\perp}$
$\eta: A \rightarrow A_{\perp}$
$\bigsqcup: \Pi_{f: \mathbb{N} \rightarrow A_{\perp}}\left(\Pi_{n: \mathbb{N}} f(n) \sqsubseteq f(n+1)\right) \rightarrow A_{\perp}$

$$
\begin{array}{ccc}
\overline{d \sqsubseteq d} \quad \overline{\perp \sqsubseteq d} \quad \frac{\bigsqcup(f, p) \sqsubseteq d}{\Pi_{n: \mathbb{N}} f(n) \sqsubseteq d} & \frac{\Pi_{n: \mathbb{N} f(n) \sqsubseteq d}}{\bigsqcup(f, p) \sqsubseteq d} \\
& \frac{d \sqsubseteq d^{\prime} \quad d^{\prime} \sqsubseteq d}{d=d^{\prime}} &
\end{array}
$$

Results

- $(-)_{\perp}$ is a monad. formalized in Agda
- A_{\perp} is non-trivial.
$\perp \neq \eta(a)$
- A_{\perp} is an $\omega-\mathrm{CPO}$ trivial Indeed we define A_{\perp} as the free ω-CPO over A.
- Assuming $A C_{\omega}$ the definition is equivalent to the previous one.
- Case study:

Danielsson has ported the Agda code related to his paper Operational Semantics using the Partiality Monad to the new definition.

