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Proposition

Proposition: There are two irrational numbers a,b s.t. a’ is
rational.

Prove the proposition!

Hints:

#® We know that /2 is irrational.

P (ab)c _ abc

-
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A proof ?!
- -

ﬂﬁ is rational. We are done with ¢ = b = /2.

\/5\/5 is irrational. Now consider a = ﬂﬁ and b = /2.

a® = (\/iﬁ)ﬁ

\/5(\/5\/5)
_ /9

= 2

o -
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but ...

o .

Exercise:
Write down 2 irrational numbers a, b S.t. o® is rational!

o -
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.

Constructive Reasoning

The proof we have given is non-constructive. T

Even though we have proven a statement of the form
Jdz.P(z), we cannot name an individual a such that P(a)
holds.

In classical logic the following equivalence holds
dz.P(x) < —Vz.-P(x)

Constructively, we want to make a difference between

dz.P(z) We are able to calculate an a such that P(a)
holds.

—Vz.—~P(xz) We know that it is not the case that P is false
everywhere. J
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® sSince 1972 as a constructive

Type Theory

Developed by Per Martin-Lof

foundation of Mathematics.

%l
At the same time a set theory and a programming

language.

Basis for a number of Computer Aided Formal
Reasonong systems:
NuPRL, LEGO, COQ, ALF, ...

Dependent types for programming J
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Plan of the course

=

. Intuitionistic logic from a type theoretic perspective
(I use constructive and intuitionistic synonymously.

. Basic constructions of Type Theory

. An extended example of a formal development:
Normalisation by evaluation

. Programming with dependent types

-
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Today
-

Intuitionistic logic from a type theoretic perspective

Proof by pattern matching and by elimination
Propositional logic, constructively
Predicate Logic, constructively

© o o o

Classical vs. intuitionistic logic

o -

An Introduction to Type Theory — p.8/3l



Propositions as types

-

We introduce a judgement
a €A

meaning that «a Is a proof of the proposition A.
We also have a judgement

A € Prop

meaning that A is a proposition.

-
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And (Conjunction)
-

How to form a conjunction?

A € Prop B € Prop
AAB € Prop

How to prove a conjunction?

a € A be B
(a.b) € ANB

(a,b) Is a canonical proof.

o -
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Or (Disjunction)
-

How to form a disjunction?

A € Prop B € Prop
AAB € Prop

How to prove a disjunction?

a € A be B
nla € AVB mrb e AVB

inla,inrb are canonical proofs.

o -
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If, (Implication)
-

How to form an implication?

A € Prop B € Prop
A—B € Prop

How to prove an implication?
r€EA
be BB
)€ Abe A—B

Ax € A.b s a canonical proofs.

o -
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Notation

o .

We will omit type annotations when they are clear from the
context,i.e. instead of

Ax € Ab

we may just write
Ax.b

o -
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Non-canonical proofs

-

How do we prove
AV(BAC)—(AVB)A(AVC)?

(given A, B, C € Prop)
We have to introduce a notion of non-canonical proofs:

elimination constants the traditional approach,
easy to formalize, but hard to use.

pattern matching suggested by Thierry Coquand in 1992,
more intuitive, but tricky metatheory.

o -
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Proof by pattern matching
-

where

f € AV(BAC)—(AVB)A(AVO)

f (inla) (inl a,inla)
f (inr (b,c)) = (inrb,inrc)



Pattern matching

o .

® We start with a trivial pattern

fx1...xpp =7

» We may develop our pattern according to the following rules:

# If a pattern variable = has type AAB we can replace it by (x1,x2) where
xl € A,xo € B are fresh variables.

& |If a pattern variable x has type AV B we can split the line into two, replacing = by
inlzy in the first line and by inrxzs in the second, where 1 € A, x5 € B are fresh

variables.

® Finally, we fill in all our right hand sides with canonical terms which may use variables
introduced in the left hand side.

® We will not use recursion in the moment (but later).

o -

An Introduction to Type Theory — p.16/3!



Elimination for —

o .

We didn’t introduce any pattern matching rules for —.
Instead we introduce application:

fe A—B a € A
faeB

where
(\x.b)a = blr <+ a]

Here blz + a] means that all free occurences of z in b are
replaced by a (capture avoiding).

o -
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Elimination constants for A and Vv

=

# Instead of using pattern matching, we may introduce
elimination constants.

#® These are special cases of pattern matching.

# Important principle: Equivalence of pattern matching

and elimination
All the proofs we can do with pattern matching can be
done using the elimination constants.

# This way pattern matching can be reduced to
elimination.

# While we move to more interesting systems it becomes
more subtle to maintain this property.

-
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Elimination constants A

peEANB peEANB
fstp e A sndp € B

where

fst(a,b) = a
snd(ab) = b



where

Elimination constants V

peE AV B feA—=C geB—C
casep fg € C

|
—n
<L

case (inla) f g

case (inrb) fg = gb



Proof using elimination constants

o .

Ap.casep (Az.(inl z,inl z)) (Ay (inr (fsty),inr (sndy)))
€ AV(BAC)—(AVB)A(AVC)



Example: commutativity of Vv

o .

orCom € A VB—BVA
where

nra

mlb

orCom (inl a)

orCom (inr b)



Define <

A<B = (A—B) A (B—A)



Example: associativity of A

-

andAss € (AVB)VC«+AV(BVC)
andAssl. € (AVB)VC—AV(BVC)
andAssR € AV(BVC) — (AVB)VC

where

andAss = (andAssl,andAssR)
andAssL ((a,b).c) = (a,(b,c))
andAssR (a,(b,c)) = ((a,b),c)



False, True

-

# We haven't yet introduced False, True.
# Canonical proof triv € True
#® There is no canonical proof for False!

o -
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Pattern matching for True, False
-

# A pattern variable of type True can be replaced by triv.
Yes, this is useless!

# |f we have a pattern variable of type False we can delete
the line.

o -
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Elimination constants for True, False

o .

There is no elimination constant for True

p € False

casel'p € a



Define —

—-A = A—False



Predicate logic

o .

#® Since we are doing things type-theoretically, we
Introduce typed predicate logic.

# We introduce the judgements
S € Type

for s is a type, and
seS

for s us an element of type S.
o Given types 5q,...,S, we write

P e Si—Sy...5,—Prop

for n — ary predicates.
L We use ) abstraction to define and application to appIyJ
p re d | Ca,tes . An Introduction to Type Theory — p.29/3



Universal quantification: V¥

-

How to form?
r €S

S € Type P € Prop

Ve € S.P € Prop

How to prove?
r €S
peP
e € ApevVr e SP

How to use?

L fevVeeSP se S
fs € Plx < s]

=

-

An Introduction to Type Theory — p.30/3!



Example

o .

allAnd € (Vzr € S PxAQux)—NVr € S.(Pz)AVzr € 5.Q x)



Existential quantification:

-

How to form?
r €S

S € Type P e Prop
Jdr € S.P € Prop

How to prove?
se S pe P

(s,p) € dz € S.P

o -
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Can we prove...

Excluded middle Tertium non datur (TND)

AV—-A
Proof by contradiction Reductio ad absurdo (RAA)

——A— A

-
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AV—-A
o .

#® Since AvV—-A is not an implication we have to provide a
canonical proof.

® Hence we have to use inl or inr.
® But which one?

o -
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A———A
- o

#® \We can prove A———A

o To prove ——A— A we have to prove a positive formula A
from a negative formula ... —False.

# This is not possible by the principle of entropy:
positive formula contain information
negative formula contain no information

o -
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Classical principles

o .

# Both principle (TND),(RAA) are not provable
constructively.

#® EXxercise: Show that both are equivalent.
# Constructive logic + TND (or RAA) = classical logic.

o -
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