
An Introduction to Type Theory
Thorsten Altenkirch

University of Nottingham

An Introduction to Type Theory – p.1/36

Proposition

Proposition: There are two irrational numbers ��
�

�
s.t. �

�

is
rational.
Prove the proposition!
Hints:

We know that

�

is irrational.

� �
��� 	

 �
� 	

An Introduction to Type Theory – p.2/36

A proof ?!

�
��

is rational. We are done with �
 �
 �

.

�
��

is irrational. Now consider �
 �
� �

and
�
 �

.

�
�

� �
��

�

��

 �
� �� �� �

 �
�

 �

An Introduction to Type Theory – p.3/36

but . . .

Exercise:
Write down 2 irrational numbers ��

�

�

s.t. �
�

is rational!

An Introduction to Type Theory – p.4/36

Constructive Reasoning
The proof we have given is non-constructive.

Even though we have proven a statement of the form� ��� � � �� , we cannot name an individual � such that

� � ��

holds.

In classical logic the following equivalence holds

� ��� � � �� �� � � ��� � � � ��

Constructively, we want to make a difference between

� ��� � � �� We are able to calculate an � such that

� � ��

holds.

� � ��� � � � �� We know that it is not the case that

�

is false
everywhere.

An Introduction to Type Theory – p.5/36

Type Theory

Developed by Per Martin-Löf
since 1972 as a constructive
foundation of Mathematics.

At the same time a set theory and a programming
language.

Basis for a number of Computer Aided Formal
Reasonong systems:
NuPRL, LEGO, COQ, ALF, . . .

Dependent types for programming
An Introduction to Type Theory – p.6/36

Plan of the course

1. Intuitionistic logic from a type theoretic perspective
(I use constructive and intuitionistic synonymously.

2. Basic constructions of Type Theory

3. An extended example of a formal development:
Normalisation by evaluation

4. Programming with dependent types

An Introduction to Type Theory – p.7/36

Today

Intuitionistic logic from a type theoretic perspective

Proof by pattern matching and by elimination

Propositional logic, constructively

Predicate Logic, constructively

Classical vs. intuitionistic logic

An Introduction to Type Theory – p.8/36

Propositions as types

We introduce a judgement

� � �

meaning that � is a proof of the proposition
�

.
We also have a judgement

� � ��� ��
meaning that

�

is a proposition.

An Introduction to Type Theory – p.9/36

And (Conjunction)

How to form a conjunction?

� � ��� �� � � ��� ��

�� � � � � ��
How to prove a conjunction?

� � � � � �

� �
�

�� � �� �

� �
�

��

is a canonical proof.

An Introduction to Type Theory – p.10/36

Or (Disjunction)

How to form a disjunction?

� � ��� �� � � ��� ��

�� � � � � ��
How to prove a disjunction?

� � �

� � � � � � � �

� � �

� �� � � � � �

� � � ��
�

� �� �

are canonical proofs.

An Introduction to Type Theory – p.11/36

If, (Implication)

How to form an implication?

� � ��� �� � � ��� ��

� � � � � � ��
How to prove an implication?

� � �
����

�
� � �

� � � �� � � � � �

� � � �� �

is a canonical proofs.

An Introduction to Type Theory – p.12/36

Notation

We will omit type annotations when they are clear from the
context,i.e. instead of

� � � �� �

we may just write

� �� �

An Introduction to Type Theory – p.13/36

Non-canonical proofs

How do we prove

� � � � � �� � � � � � � � � � � ���
(given

�
�

�
�

� � ��� ��)
We have to introduce a notion of non-canonical proofs:

elimination constants the traditional approach,
easy to formalize, but hard to use.

pattern matching suggested by Thierry Coquand in 1992,
more intuitive, but tricky metatheory.

An Introduction to Type Theory – p.14/36

Proof by pattern matching

� � � � � � � �� � � � � � � � � � � ��
where

� � � � � ��

� � � � �
�

� � � ��

� � � �� � �
�

�
� �

� � �� �
�

� �� �
�

An Introduction to Type Theory – p.15/36

Pattern matching

We start with a trivial pattern

� �� � � � ��� � �

We may develop our pattern according to the following rules:

If a pattern variable � has type

�	

we can replace it by
� � � � �
 �

where

� � � �� �
 �

are fresh variables.

If a pattern variable � has type

��

we can split the line into two, replacing � by

��� � � � in the first line and by

��� � �
 in the second, where � � � �� �
 �

are fresh
variables.

Finally, we fill in all our right hand sides with canonical terms which may use variables
introduced in the left hand side.

We will not use recursion in the moment (but later).

An Introduction to Type Theory – p.16/36

Elimination for

We didn’t introduce any pattern matching rules for �.
Instead we introduce application:

� � � � � � � �

� � � �
where

� � ��� �� �
 � � � � � �

Here

� � � � � �

means that all free occurences of � in �

are
replaced by � (capture avoiding).

An Introduction to Type Theory – p.17/36

Elimination constants for and

Instead of using pattern matching, we may introduce
elimination constants.

These are special cases of pattern matching.

Important principle: Equivalence of pattern matching
and elimination
All the proofs we can do with pattern matching can be
done using the elimination constants.

This way pattern matching can be reduced to
elimination.

While we move to more interesting systems it becomes
more subtle to maintain this property.

An Introduction to Type Theory – p.18/36

Elimination constants

� � � � �

��� � � � �

� � � � �

� � � � � �
where

� � � � �
�

��
 �

� � � � �
�

��
 �

An Introduction to Type Theory – p.19/36

Elimination constants

� � � � � � � � � � � � � � �

�� � � � � � � �

where

�� � � � � � � �� � �

� �

�� � � � � �� �� � �
 � �

An Introduction to Type Theory – p.20/36

Proof using elimination constants

� �� �� � � � � � �� � � � � �
�

� � � �� � � �� � � �� � ��� � � �
�

� �� � � � �� � � �

� � � � � � �� � � � � � � � � � � ��

An Introduction to Type Theory – p.21/36

Example: commutativity of

�� � � � � � � � � � � �

where

�� � � � � � � � ��
 � �� �

�� � � � � � �� ��
 � � � �

An Introduction to Type Theory – p.22/36

Define

� � �

� � � � � � � � � ��

An Introduction to Type Theory – p.23/36

Example: associativity of

� ��

� ��

� � � � � � � � � � � � � �� � � � � � � � �

where

� � � � � �

� � � � � � � �
�

� � � � � � ��

� � � � � � � � � �
�

��
�

�
�

� �
�

� �
�

�
� �

� � � � � � � � �
�

� �
�

�
� �

� � �
�

��
�

�
�

An Introduction to Type Theory – p.24/36

� � ��
�

� �

We haven’t yet introduced

�� � � �
�

�� � �.

Canonical proof

� � �
	 � �� � �

There is no canonical proof for

�� � � �!

An Introduction to Type Theory – p.25/36

Pattern matching for � �
�

� � �

A pattern variable of type

�� � � can be replaced by

� � �
	 .
Yes, this is useless!

If we have a pattern variable of type

�� � � � we can delete
the line.

An Introduction to Type Theory – p.26/36

Elimination constants for � �
�

� � �

There is no elimination constant for

�� � �

� � �� � � �

�� � � � � � �

An Introduction to Type Theory – p.27/36

Define �

� �

� � �� � � �

An Introduction to Type Theory – p.28/36

Predicate logic

Since we are doing things type-theoretically, we
introduce typed predicate logic.

We introduce the judgements

� � ��� � �
for s is a type, and

� � �

for � us an element of type
�

.

Given types

��� � � � � �

��
� we write

� � ��� � �
� � � � ��
� � � � ��

for � 	 �
 � predicates.
We use

�
abstraction to define and application to apply

predicates.
The rationale for this notation will become clear later (I
hope).

An Introduction to Type Theory – p.29/36

Universal quantification:

How to form?

� � ��� � �

� � �
���
�� � ��� ��

� � � �� � � � � ��

How to prove? � � �
��
���

� � �

� � � �� � � � � � �� �

How to use?

� � � � � �� � � � �

� � � � � � � � �

where

An Introduction to Type Theory – p.30/36

Example

� � � � � � � � � � � �� � � � � �� � � � � � �� � � �� � � � � � � �� � ��

An Introduction to Type Theory – p.31/36

Existential quantification:

How to form?

� � ��� � �

� � �
���
�� � ��� ��

� � � �� � � � � ��

How to prove?

� � � � � �

� �
�

�� � � � � �� �

An Introduction to Type Theory – p.32/36

Can we prove. . .

Excluded middle Tertium non datur (TND)

� � � �

Proof by contradiction Reductio ad absurdo (RAA)

� � � � �

?

An Introduction to Type Theory – p.33/36

�

Since

� � � �

is not an implication we have to provide a
canonical proof.

Hence we have to use

� � �

or

� �� .

But which one?

An Introduction to Type Theory – p.34/36

� �

We can prove

� � � � �

To prove � � � � �

we have to prove a positive formula

�

from a negative formula � � � � �� � � �.

This is not possible by the principle of entropy :
positive formula contain information
negative formula contain no information

An Introduction to Type Theory – p.35/36

Classical principles

Both principle (TND),(RAA) are not provable
constructively.

Exercise: Show that both are equivalent.

Constructive logic + TND (or RAA) = classical logic.

An Introduction to Type Theory – p.36/36

	Proposition
	A proof ?!
	but dots
	Constructive Reasoning
	Type Theory
	Plan of the course
	Today
	Propositions as types
	And (Conjunction)
	Or (Disjunction)
	If, (Implication)
	Notation
	Non-canonical proofs
	Proof by pattern matching
	Pattern matching
	Elimination for $Rto $
	Elimination constants for $wedge $ and $vee $
	Elimination constants $Rwedge $
	Elimination constants $Rvee $
	Proof using elimination constants
	Example: commutativity of $Rvee $
	Define $Riff $
	Example: associativity of $Rwedge $
	$RFalse ,RTrue $
	Pattern matching for $RTrue ,RFalse $
	Elimination constants for $RTrue ,RFalse $
	Define $Rneg $
	Predicate logic
	Universal quantification: $RAll $
	Example
	Existential quantification: $REx $
	Can we provedots
	$RA Rvee Rneg RA $
	$RA Rto Rneg Rneg RA $
	Classical principles

