
An Introduction to Type Theory
Thorsten Altenkirch

University of Nottingham

An Introduction to Type Theory – p.1/36



Proposition

Proposition: There are two irrational numbers ��
�

�
s.t. �

�

is
rational.
Prove the proposition!
Hints:

We know that

�

is irrational.

� �
��� 	


 �
� 	
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A proof ?!

�
��

is rational. We are done with � 
 � 
 �

.

�
��

is irrational. Now consider � 
 �
� �

and
� 
 �

.

�
�




� �
��

�

��


 �
� �� �� �


 �
�


 �
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but . . .

Exercise:
Write down 2 irrational numbers ��

�

�

s.t. �
�

is rational!

An Introduction to Type Theory – p.4/36



Constructive Reasoning
The proof we have given is non-constructive.

Even though we have proven a statement of the form� ��� � � �� , we cannot name an individual � such that

� � ��

holds.

In classical logic the following equivalence holds

� ��� � � �� �� � � ��� � � � ��

Constructively, we want to make a difference between

� ��� � � �� We are able to calculate an � such that

� � ��

holds.

� � ��� � � � �� We know that it is not the case that

�

is false
everywhere.
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Type Theory

Developed by Per Martin-Löf
since 1972 as a constructive
foundation of Mathematics.

At the same time a set theory and a programming
language.

Basis for a number of Computer Aided Formal
Reasonong systems:
NuPRL, LEGO, COQ, ALF, . . .

Dependent types for programming
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Plan of the course

1. Intuitionistic logic from a type theoretic perspective
(I use constructive and intuitionistic synonymously.

2. Basic constructions of Type Theory

3. An extended example of a formal development:
Normalisation by evaluation

4. Programming with dependent types
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Today

Intuitionistic logic from a type theoretic perspective

Proof by pattern matching and by elimination

Propositional logic, constructively

Predicate Logic, constructively

Classical vs. intuitionistic logic
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Propositions as types

We introduce a judgement

� � �

meaning that � is a proof of the proposition
�

.
We also have a judgement

� � ��� ��
meaning that

�

is a proposition.
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And (Conjunction)

How to form a conjunction?

� � ��� �� � � ��� ��

�� � � � � ��
How to prove a conjunction?

� � � � � �

� �
�

�� � �� �

� �
�

��

is a canonical proof.
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Or (Disjunction)

How to form a disjunction?

� � ��� �� � � ��� ��

�� � � � � ��
How to prove a disjunction?

� � �

� � � � � � � �

� � �

� �� � � � � �

� � � ��
�

� �� �

are canonical proofs.
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If, (Implication)

How to form an implication?

� � ��� �� � � ��� ��

� � � � � � ��
How to prove an implication?

� � �
����

�
� � �

� � � �� � � � � �

� � � �� �

is a canonical proofs.
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Notation

We will omit type annotations when they are clear from the
context,i.e. instead of

� � � �� �

we may just write

� �� �
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Non-canonical proofs

How do we prove

� � � � � �� � � � � � � � � � � ���
(given

�
�

�
�

� � ��� �� )
We have to introduce a notion of non-canonical proofs:

elimination constants the traditional approach,
easy to formalize, but hard to use.

pattern matching suggested by Thierry Coquand in 1992,
more intuitive, but tricky metatheory.
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Proof by pattern matching

� � � � � � � �� � � � � � � � � � � ��
where

� � � � � �� 


� � � � �
�

� � � ��

� � � �� � �
�

�
� �




� � �� �
�

� �� �
�
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Pattern matching

We start with a trivial pattern

� �� � � � ��� � �

We may develop our pattern according to the following rules:

If a pattern variable � has type

�	 


we can replace it by
� � � � � �

where

� � � �� � � 


are fresh variables.

If a pattern variable � has type

�� 


we can split the line into two, replacing � by

��� � � � in the first line and by

��� � � in the second, where � � � �� � � 


are fresh
variables.

Finally, we fill in all our right hand sides with canonical terms which may use variables
introduced in the left hand side.

We will not use recursion in the moment (but later).
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Elimination for

We didn’t introduce any pattern matching rules for �.
Instead we introduce application:

� � � � � � � �

� � � �
where

� � ��� �� � 
 � � � � � �

Here

� � � � � �

means that all free occurences of � in �

are
replaced by � (capture avoiding).
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Elimination constants for and

Instead of using pattern matching, we may introduce
elimination constants.

These are special cases of pattern matching.

Important principle: Equivalence of pattern matching
and elimination
All the proofs we can do with pattern matching can be
done using the elimination constants.

This way pattern matching can be reduced to
elimination.

While we move to more interesting systems it becomes
more subtle to maintain this property.
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Elimination constants

� � � � �

��� � � � �

� � � � �

� � � � � �
where

� � � � �
�

�� 
 �

� � � � �
�

�� 
 �
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Elimination constants

� � � � � � � � � � � � � � �

�� � � � � � � �

where

�� � � � � � � �� � � 


� �

�� � � � � �� �� � � 
 � �
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Proof using elimination constants

� �� �� � � � � � �� � � � � �
�

� � � �� � � �� � � �� � ��� � � �
�

� �� � � � �� � � �

� � � � � � �� � � � � � � � � � � ��
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Example: commutativity of

�� � � � � � � � � � � �

where

�� � � � � � � � �� 
 � �� �

�� � � � � � �� �� 
 � � � �
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Define

� � � 

� � � � � � � � � ��
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Example: associativity of

� � � � � � � � � � � � � � � � � � � � ��

� � � � � � � � � � � � � � � � � � � � � ��

� � � � � � � � � � � � � �� � � � � � � � �

where

� � � � � � 


� � � � � � � �
�

� � � � � � ��

� � � � � � � � � �
�

��
�

�
�




� �
�

� �
�

�
� �

� � � � � � � � �
�

� �
�

�
� �




� � �
�

��
�

�
�
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� � ��
�

� �

We haven’t yet introduced

�� � � �
�

�� � �.

Canonical proof

� � �
	 � �� � �

There is no canonical proof for

�� � � �!
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Pattern matching for � �
�

� � �

A pattern variable of type

�� � � can be replaced by

� � �
	 .
Yes, this is useless!

If we have a pattern variable of type

�� � � � we can delete
the line.

An Introduction to Type Theory – p.26/36



Elimination constants for � �
�

� � �

There is no elimination constant for

�� � �

� � �� � � �

�� � � � � � �
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Define �

� �



� � �� � � �
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Predicate logic

Since we are doing things type-theoretically, we
introduce typed predicate logic.

We introduce the judgements

� � ��� � �
for s is a type, and

� � �

for � us an element of type
�

.

Given types

��� � � � � �

��
� we write

� � ��� � �
� � � � ��
� � � � ��

for � 	 �
 � predicates.
We use

�
abstraction to define and application to apply

predicates.
The rationale for this notation will become clear later (I
hope).
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Universal quantification:

How to form?

� � ��� � �

� � �
���
�� � ��� ��

� � � �� � � � � ��

How to prove? � � �
��
���

� � �

� � � �� � � � � � �� �

How to use?

� � � � � �� � � � �

� � � � � � � � �

where
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Example

� � � � � � � � � � � �� � � � � �� � � � � � �� � � �� � � � � � � �� � ��
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Existential quantification:

How to form?

� � ��� � �

� � �
���
�� � ��� ��

� � � �� � � � � ��

How to prove?

� � � � � �

� �
�

�� � � � � �� �
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Can we prove. . .

Excluded middle Tertium non datur (TND)

� � � �

Proof by contradiction Reductio ad absurdo (RAA)

� � � � �

?
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�

Since

� � � �

is not an implication we have to provide a
canonical proof.

Hence we have to use

� � �

or

� �� .

But which one?
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� �

We can prove

� � � � �

To prove � � � � �

we have to prove a positive formula

�

from a negative formula � � � � �� � � �.

This is not possible by the principle of entropy :
positive formula contain information
negative formula contain no information
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Classical principles

Both principle (TND),(RAA) are not provable
constructively.

Exercise: Show that both are equivalent.

Constructive logic + TND (or RAA) = classical logic.
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