B -
An Introduction to Type Theory

Thorsten Altenkirch

University of Nottingham

Proposition

Proposition: There are two irrational numbers a,b s.t. a’ is
rational.

Prove the proposition!

Hints:

#® We know that /2 is irrational.

P (ab)c _ abc

-

An Introduction to Type Theory — p.2/3|

A proof ?!
- -

ﬂﬁ is rational. We are done with ¢ = b = /2.

\/5\/5 is irrational. Now consider a = ﬂﬁ and b = /2.

a® = (\/iﬁ)ﬁ

\/5(\/5\/5)
_ /9

= 2

o -

An Introduction to Type Theory — p.3/3l

but ...

o .

Exercise:
Write down 2 irrational numbers a, b S.t. o® is rational!

o -

An Introduction to Type Theory — p.4/3

.

Constructive Reasoning

The proof we have given is non-constructive. T

Even though we have proven a statement of the form
Jdz.P(z), we cannot name an individual a such that P(a)
holds.

In classical logic the following equivalence holds
dz.P(x) < —Vz.-P(x)

Constructively, we want to make a difference between

dz.P(z) We are able to calculate an a such that P(a)
holds.

—Vz.—~P(xz) We know that it is not the case that P is false
everywhere. J

An Introduction to Type Theory — p.5/3|

® sSince 1972 as a constructive

Type Theory

Developed by Per Martin-Lof

foundation of Mathematics.

%l
At the same time a set theory and a programming

language.

Basis for a number of Computer Aided Formal
Reasonong systems:
NuPRL, LEGO, COQ, ALF, ...

Dependent types for programming J

An Introduction to Type Theory — p.6/3!

Plan of the course

=

. Intuitionistic logic from a type theoretic perspective
(I use constructive and intuitionistic synonymously.

. Basic constructions of Type Theory

. An extended example of a formal development:
Normalisation by evaluation

. Programming with dependent types

-

An Introduction to Type Theory — p.7/3

Today
-

Intuitionistic logic from a type theoretic perspective

Proof by pattern matching and by elimination
Propositional logic, constructively
Predicate Logic, constructively

© o o o

Classical vs. intuitionistic logic

o -

An Introduction to Type Theory — p.8/3l

Propositions as types

-

We introduce a judgement
a €A

meaning that «a Is a proof of the proposition A.
We also have a judgement

A € Prop

meaning that A is a proposition.

-

An Introduction to Type Theory — p.9/3|

And (Conjunction)
-

How to form a conjunction?

A € Prop B € Prop
AAB € Prop

How to prove a conjunction?

a € A be B
(a.b) € ANB

(a,b) Is a canonical proof.

o -

An Introduction to Type Theory — p.10/3K

Or (Disjunction)
-

How to form a disjunction?

A € Prop B € Prop
AAB € Prop

How to prove a disjunction?

a € A be B
nla € AVB mrb e AVB

inla,inrb are canonical proofs.

o -

An Introduction to Type Theory — p.11/3K

If, (Implication)
-

How to form an implication?

A € Prop B € Prop
A—B € Prop

How to prove an implication?
r€EA
be BB
)€ Abe A—B

Ax € A.b s a canonical proofs.

o -

An Introduction to Type Theory — p.12/3K

Notation

o .

We will omit type annotations when they are clear from the
context,i.e. instead of

Ax € Ab

we may just write
Ax.b

o -

An Introduction to Type Theory — p.13/3K

Non-canonical proofs

-

How do we prove
AV(BAC)—(AVB)A(AVC)?

(given A, B, C € Prop)
We have to introduce a notion of non-canonical proofs:

elimination constants the traditional approach,
easy to formalize, but hard to use.

pattern matching suggested by Thierry Coquand in 1992,
more intuitive, but tricky metatheory.

o -

An Introduction to Type Theory — p.14/3f

Proof by pattern matching
-

where

f € AV(BAC)—(AVB)A(AVO)

f (inla) (inl a,inla)
f (inr (b,c)) = (inrb,inrc)

Pattern matching

o .

® We start with a trivial pattern

fx1...xpp =7

» We may develop our pattern according to the following rules:

If a pattern variable = has type AAB we can replace it by (x1,x2) where
xl € A,xo € B are fresh variables.

& |If a pattern variable x has type AV B we can split the line into two, replacing = by
inlzy in the first line and by inrxzs in the second, where 1 € A, x5 € B are fresh

variables.

® Finally, we fill in all our right hand sides with canonical terms which may use variables
introduced in the left hand side.

® We will not use recursion in the moment (but later).

o -

An Introduction to Type Theory — p.16/3!

Elimination for —

o .

We didn’t introduce any pattern matching rules for —.
Instead we introduce application:

fe A—B a € A
faeB

where
(\x.b)a = blr <+ a]

Here blz + a] means that all free occurences of z in b are
replaced by a (capture avoiding).

o -

An Introduction to Type Theory — p.17/3f

Elimination constants for A and Vv

=

Instead of using pattern matching, we may introduce
elimination constants.

#® These are special cases of pattern matching.

Important principle: Equivalence of pattern matching

and elimination
All the proofs we can do with pattern matching can be
done using the elimination constants.

This way pattern matching can be reduced to
elimination.

While we move to more interesting systems it becomes
more subtle to maintain this property.

-

An Introduction to Type Theory — p.18/3K

Elimination constants A

peEANB peEANB
fstp e A sndp € B

where

fst(a,b) = a
snd(ab) = b

where

Elimination constants V

peE AV B feA—=C geB—C
casep fg € C

|
—n
<L

case (inla) f g

case (inrb) fg = gb

Proof using elimination constants

o .

Ap.casep (Az.(inl z,inl z)) (Ay (inr (fsty),inr (sndy)))
€ AV(BAC)—(AVB)A(AVC)

Example: commutativity of Vv

o .

orCom € A VB—BVA
where

nra

mlb

orCom (inl a)

orCom (inr b)

Define <

A<B = (A—B) A (B—A)

Example: associativity of A

-

andAss € (AVB)VC«+AV(BVC)
andAssl. € (AVB)VC—AV(BVC)
andAssR € AV(BVC) — (AVB)VC

where

andAss = (andAssl,andAssR)
andAssL ((a,b).c) = (a,(b,c))
andAssR (a,(b,c)) = ((a,b),c)

False, True

-

We haven't yet introduced False, True.
Canonical proof triv € True
#® There is no canonical proof for False!

o -

An Introduction to Type Theory — p.25/3K

Pattern matching for True, False
-

A pattern variable of type True can be replaced by triv.
Yes, this is useless!

|f we have a pattern variable of type False we can delete
the line.

o -

An Introduction to Type Theory — p.26/3!

Elimination constants for True, False

o .

There is no elimination constant for True

p € False

casel'p € a

Define —

—-A = A—False

Predicate logic

o .

#® Since we are doing things type-theoretically, we
Introduce typed predicate logic.

We introduce the judgements
S € Type

for s is a type, and
seS

for s us an element of type S.
o Given types 5q,...,S, we write

P e Si—Sy...5,—Prop

for n — ary predicates.
L We use) abstraction to define and application to appIyJ
p re d | Ca,tes . An Introduction to Type Theory — p.29/3

Universal quantification: V¥

-

How to form?
r €S

S € Type P € Prop

Ve € S.P € Prop

How to prove?
r €S
peP
e € ApevVr e SP

How to use?

L fevVeeSP se S
fs € Plx < s]

=

-

An Introduction to Type Theory — p.30/3!

Example

o .

allAnd € (Vzr € S PxAQux)—NVr € S.(Pz)AVzr € 5.Q x)

Existential quantification:

-

How to form?
r €S

S € Type P e Prop
Jdr € S.P € Prop

How to prove?
se S pe P

(s,p) € dz € S.P

o -

An Introduction to Type Theory — p.32/3!

Can we prove...

Excluded middle Tertium non datur (TND)

AV—-A
Proof by contradiction Reductio ad absurdo (RAA)

——A— A

-

An Introduction to Type Theory — p.33/3!

AV—-A
o .

#® Since AvV—-A is not an implication we have to provide a
canonical proof.

® Hence we have to use inl or inr.
® But which one?

o -

An Introduction to Type Theory — p.34/3f

A———A
- o

#® \We can prove A———A

o To prove ——A— A we have to prove a positive formula A
from a negative formula ... —False.

This is not possible by the principle of entropy:
positive formula contain information
negative formula contain no information

o -

An Introduction to Type Theory — p.35/3!

Classical principles

o .

Both principle (TND),(RAA) are not provable
constructively.

#® EXxercise: Show that both are equivalent.
Constructive logic + TND (or RAA) = classical logic.

o -

An Introduction to Type Theory — p.36/3!

	Proposition
	A proof ?!
	but dots
	Constructive Reasoning
	Type Theory
	Plan of the course
	Today
	Propositions as types
	And (Conjunction)
	Or (Disjunction)
	If, (Implication)
	Notation
	Non-canonical proofs
	Proof by pattern matching
	Pattern matching
	Elimination for $Rto $
	Elimination constants for $wedge $ and $vee $
	Elimination constants $Rwedge $
	Elimination constants $Rvee $
	Proof using elimination constants
	Example: commutativity of $Rvee $
	Define $Riff $
	Example: associativity of $Rwedge $
	$RFalse ,RTrue $
	Pattern matching for $RTrue ,RFalse $
	Elimination constants for $RTrue ,RFalse $
	Define $Rneg $
	Predicate logic
	Universal quantification: $RAll $
	Example
	Existential quantification: $REx $
	Can we provedots
	$RA Rvee Rneg RA $
	$RA Rto Rneg Rneg RA $
	Classical principles

