An Introduction to Type Theory

Thorsten Altenkirch

University of Nottingham

Proposition

Proposition: There are two irrational numbers a, b s.t. a^b is rational. *Prove the proposition!* **Hints:**

• We know that $\sqrt{2}$ is irrational.

$$(a^b)^c = a^{bc}$$

A proof ?!

 $\sqrt{2}^{\sqrt{2}}$ is rational. We are done with $a = b = \sqrt{2}$. $\sqrt{2}^{\sqrt{2}}$ is irrational. Now consider $a = \sqrt{2}^{\sqrt{2}}$ and $b = \sqrt{2}$.

$$a^{b} = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}$$
$$= \sqrt{2}^{(\sqrt{2}\sqrt{2})}$$
$$= \sqrt{2}^{2}$$
$$= 2$$

Exercise: Write down 2 irrational numbers a, b s.t. a^b is rational!

Constructive Reasoning

- The proof we have given is non-constructive.
- Even though we have proven a statement of the form
 ∃x.P(x), we cannot name an individual a such that P(a) holds.
- In classical logic the following equivalence holds

$$\exists x. P(x) \iff \neg \forall x. \neg P(x)$$

- Constructively, we want to make a difference between $\exists x.P(x)$ We are able to *calculate* an *a* such that P(a) holds.
 - $\neg \forall x. \neg P(x)$ We know that it is not the case that *P* is false everywhere.

Type Theory

Developed by Per Martin-Löf
 since 1972 as a constructive foundation of Mathematics.

- At the same time a set theory and a programming language.
- Basis for a number of Computer Aided Formal Reasonong systems: NuPRL, LEGO, COQ, ALF, ...
- Dependent types for programming

Plan of the course

- 1. Intuitionistic logic from a type theoretic perspective (I use *constructive* and *intuitionistic* synonymously.
- 2. Basic constructions of Type Theory
- 3. An extended example of a formal development: Normalisation by evaluation
- 4. Programming with dependent types

Today

Intuitionistic logic from a type theoretic perspective

- Proof by pattern matching and by elimination
- Propositional logic, constructively
- Predicate Logic, constructively
- Classical vs. intuitionistic logic

Propositions as types

We introduce a judgement

 $a \in A$

meaning that a is a proof of the proposition A. We also have a judgement

 $A \in \operatorname{Prop}$

meaning that A is a proposition.

And (Conjunction)

How to form a conjunction?

$$\frac{A \in \operatorname{Prop} \quad B \in \operatorname{Prop}}{A \land B \in \operatorname{Prop}}$$

How to prove a conjunction?

$$\frac{a \in A \qquad b \in B}{(a,b) \in A \land B}$$

(a,b) is a canonical proof.

Or (Disjunction)

How to form a disjunction?

$$\frac{A \in \operatorname{Prop} \quad B \in \operatorname{Prop}}{A \land B \in \operatorname{Prop}}$$

How to prove a disjunction?

$$\frac{a \in A}{\operatorname{inl} a \in A \lor B} \qquad \frac{b \in B}{\operatorname{inr} b \in A \lor B}$$

 $\operatorname{inl} a, \operatorname{inr} b$ are canonical proofs.

If, (Implication)

How to form an implication?

$$\frac{A \in \operatorname{Prop} \quad B \in \operatorname{Prop}}{A {\rightarrow} B \in \operatorname{Prop}}$$

How to prove an implication?

$$x \in A$$

$$\vdots$$

$$b \in B$$

$$\overline{\lambda x} \in A.b \in A \rightarrow B$$

 $\lambda x \in A.b$ is a canonical proofs.

Notation

We will omit type annotations when they are clear from the context, i.e. instead of

 $\lambda x \in A.b$

we may just write

 $\lambda x.b$

Non-canonical proofs

How do we prove

$A \lor (B \land C) \rightarrow (A \lor B) \land (A \lor C)?$

(given $A, B, C \in Prop$) We have to introduce a notion of *non-canonical proofs*:

elimination constants the traditional approach, easy to formalize, but hard to use.

pattern matching suggested by Thierry Coquand in 1992, more intuitive, but tricky metatheory.

Proof by pattern matching

 $f \in A \lor (B \land C) {\rightarrow} (A \lor B) \land (A \lor C)$

where

$$f(\operatorname{inl} a) = (\operatorname{inl} a, \operatorname{inl} a)$$

$$f(\operatorname{inr} (b,c)) = (\operatorname{inr} b, \operatorname{inr} c)$$

Pattern matching

We start with a trivial pattern

 $f x_1 \dots x_n = ?$

- We may develop our pattern according to the following rules:
 - If a pattern variable x has type $A \land B$ we can replace it by (x_1, x_2) where $x_1 \in A, x_2 \in B$ are fresh variables.
 - If a pattern variable x has type $A \lor B$ we can split the line into two, replacing x by $inlx_1$ in the first line and by $inrx_2$ in the second, where $x_1 \in A, x_2 \in B$ are fresh variables.
- Finally, we fill in all our right hand sides with canonical terms which may use variables introduced in the left hand side.
- We will not use recursion in the moment (but later).

Elimination for \rightarrow

We didn't introduce any pattern matching rules for \rightarrow . Instead we introduce application:

$$\frac{f \in A \longrightarrow B}{f \ a \in B} \qquad a \in A$$

where

$$(\lambda x.b) a = b[x \leftarrow a]$$

Here $b[x \leftarrow a]$ means that all *free occurences* of x in b are replaced by a (capture avoiding).

Elimination constants for \wedge and \vee

- Instead of using pattern matching, we may introduce elimination constants.
- These are special cases of pattern matching.
- Important principle: Equivalence of pattern matching and elimination All the proofs we can do with pattern matching can be done using the elimination constants.
- This way pattern matching can be reduced to elimination.
- While we move to more interesting systems it becomes more subtle to maintain this property.

Elimination constants \wedge

$$\frac{p \in A \land B}{\operatorname{fst} p \in A} \qquad \frac{p \in A \land B}{\operatorname{snd} p \in B}$$

where

 $\begin{aligned} & \mathbf{fst}(a,b) &= a \\ & \mathbf{snd}(a,b) &= b \end{aligned}$

Elimination constants \lor

$$\begin{array}{ccc} p \in A \lor B & f \in A \to C & g \in B \to C \\ \\ \hline \mathbf{case} \ p \ f \ g \in C \end{array} \end{array}$$

where

case (inl a) f g = f acase (inr b) f g = g b

Proof using elimination constants

$$\begin{split} &\lambda p. \operatorname{case} p\left(\lambda x. (\operatorname{inl} x, \operatorname{inl} x)\right) \left(\lambda y \left(\operatorname{inr} \left(\operatorname{fst} y\right), \operatorname{inr} \left(\operatorname{snd} y\right)\right)\right) \\ &\in A \lor (B \land C) {\rightarrow} (A \lor B) \land (A \lor C) \end{split}$$

Example: commutativity of \lor

orCom $\in A \lor B \rightarrow B \lor A$

where

 $\operatorname{orCom}(\operatorname{inl} a) = \operatorname{inr} a$ $\operatorname{orCom}(\operatorname{inr} b) = \operatorname{inl} b$

$\textbf{Define} \leftrightarrow$

 $A {\leftrightarrow} B = (A {\rightarrow} B) \land (B {\rightarrow} A)$

Example: associativity of \wedge

andAss $\in (A \lor B) \lor C \leftrightarrow A \lor (B \lor C)$ andAssL $\in (A \lor B) \lor C \rightarrow A \lor (B \lor C)$ andAssR $\in A \lor (B \lor C) \rightarrow (A \lor B) \lor C$

where

andAss = (andAssL,andAssR)andAssL ((a,b),c) = (a,(b,c))andAssR (a,(b,c)) = ((a,b),c)

False, True

- We haven't yet introduced False, True.
- Canonical proof $triv \in True$
- There is no canonical proof for False!

Pattern matching for True, False

- A pattern variable of type True can be replaced by triv. Yes, this is useless!
- If we have a pattern variable of type False we can delete the line.

Elimination constants for True, False

There is no elimination constant for $\underline{\mathbf{True}}$

 $\frac{p \in \text{False}}{\text{caseF } p \in a}$

Define ¬

 $\neg A = A \rightarrow \text{False}$

Predicate logic

- Since we are doing things type-theoretically, we introduce typed predicate logic.
- We introduce the judgements

 $S \in Type$

for s is a type, and

 $s \in S$

for s us an element of type S.

• Given types S_1, \ldots, S_n we write

 $P \in S_1 \rightarrow S_2 \dots S_n \rightarrow \text{Prop}$

for n - ary predicates.

Universal quantification: \forall

How to form?

How to prove?

$$x \in S$$

$$\vdots$$

$$p \in P$$

$$\lambda x \in A.p \in \forall x \in S.P$$

How to use?

$$\frac{f \in \forall x \in S.P \qquad s \in S}{f \, s \in P[x \leftarrow s]}$$

An Introduction to Type Theory - p.30/3

Example

allAnd $\in (\forall x \in S.P \ x \land Q \ x) \rightarrow (\forall x \in S.(P \ x)) \land (\forall x \in S.Q \ x)$

Existential quantification: \exists

How to form?

How to prove?

 $\frac{s \in S \qquad p \in P}{(s,p) \in \exists x \in S.P}$

Can we prove...

Excluded middle Tertium non datur (TND)

$A \lor \neg A$

Proof by contradiction Reductio ad absurdo (RAA)

$\neg \neg A \to A$

?

$A \lor \neg A$

- Since $A \lor \neg A$ is not an implication we have to provide a canonical proof.
- Hence we have to use inl or inr.
- But which one?

$A \rightarrow \neg \neg A$

- We can prove $A \rightarrow \neg \neg A$
- To prove $\neg \neg A \rightarrow A$ we have to prove a *positive* formula A from a *negative* formula $\ldots \rightarrow False$.
- This is not possible by the principle of *entropy*: positive formula contain information negative formula contain no information

Classical principles

- Both principle (TND),(RAA) are not provable constructively.
- **Exercise:** Show that both are equivalent.
- Constructive logic + TND (or RAA) = classical logic.