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Plan of the course

1. Intuitionistic logic from a type theoretic perspective

2. Basic constructions of Type Theory

3. Programming with dependent types
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Today

Basic constructions of Type Theory

From Logic to Type Theory: .

Example: Decidability of

Proof or program?

Pattern matching and elimination

Uniqueness of equality proofs

Inductive families

Loose ends
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From Logic to Type Theory

In intuitionistic logic constructing proofs is very much
like writing functional programs.

In Type Theory we go one step further:
Proofs = Programs
Propositions = Types
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From Logic to Type Theory

We will also make the following indentifications:
Implication ( )
Universal quantifications ( ) Pi-types ( )
Function types ( )
Conjunction ( )
Existential quantification ( ) Sigma-types ( )
Cartesian product ( )
Disjunction
Disjoint union ( ) Disjoint union ( )
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From Logic to Type Theory

Elimination becomes more subtle:

Pattern matching We have to keep track of the steps in
the type.

Elimination constants Get replaced by their dependent
versions.
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Set theoretic encodings

Let be sets, then:

Let be a set and for each let be a set, then:
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Example: Decidability of �

In intuitionistic arithmetic we can prove

where

We will use this example to motivate the idea that
proofs = programs.
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Natural Numbers

How to form ?

How to construct ?
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Proving decidablity

We will present a proof

using pattern matching.

We will discuss the rules for pattern matching later.
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Peano’s axioms
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empty pattern
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empty pattern

An Introduction to Type Theory – p.12/46



Peano’s axioms

� � �� � � � � � ��� � �
� � � � � � � �� ���	

where
empty pattern

where
empty pattern

An Introduction to Type Theory – p.12/46



Peano’s axioms

� � �� � � � � � ��� � �
� � � � � � � �� ���	

where
empty pattern

where
empty pattern

An Introduction to Type Theory – p.12/46



Peano’s axioms

� � �� � � � � � ��� � �
� � � � � � � �� ���	

where
empty pattern

� � �� � � � � � � ��� � �
� � � � � � � �� ���	

where
empty pattern

An Introduction to Type Theory – p.12/46



Peano’s axioms

� � �� � � � � � ��� � �
� � � � � � � �� ���	

where
empty pattern

� � �� � � � � � � ��� � �
� � � � � � � �� ���	

where
empty pattern

An Introduction to Type Theory – p.12/46



Peano’s axioms

where

where

An Introduction to Type Theory – p.13/46



Peano’s axioms

�	 � � � � � �
�

� � � � � �
� � � � � � � � � � �

where

where

An Introduction to Type Theory – p.13/46



Peano’s axioms

�	 � � � � � �
�

� � � � � �
� � � � � � � � � � �

where

�	 � � � � � �
�	 � � �

� �	 � � � � �

where

An Introduction to Type Theory – p.13/46



Peano’s axioms

�	 � � � � � �
�

� � � � � �
� � � � � � � � � � �

where

�	 � � � � � �
�	 � � �

� �	 � � � � �

� � � � � � �
�

� � ��� � �
� � � � � � � � � � �

where

An Introduction to Type Theory – p.13/46



Peano’s axioms

�	 � � � � � �
�

� � � � � �
� � � � � � � � � � �

where

�	 � � � � � �
�	 � � �

� �	 � � � � �

� � � � � � �
�

� � ��� � �
� � � � � � � � � � �

where

� � � � � � �
�	 � � � � � �

� �	 � �

An Introduction to Type Theory – p.13/46



Proving decidability

where

An Introduction to Type Theory – p.14/46



Proving decidability

	 � � � � � �
�

� � � � � �
� � � � � � �� � �

� � � � �� � � � � � � � �� � � �
� � � � �

where

An Introduction to Type Theory – p.14/46



Proving decidability

	 � � � � � �
�

� � � � � �
� � � � � � �� � �

� � � � �� � � � � � � � �� � � �
� � � � �

where

	 � � � � � � � �
� � �

� � �
� �

�	 � � � � � � �

	 � � � � � � � � �

 �

� � � �
� �� �


 � � � � � � � 
 � �

An Introduction to Type Theory – p.14/46



Proving decidability

where

An Introduction to Type Theory – p.15/46



Proving decidability

	 � � � � �
�

� � � � � �
� � � � � �� � �

� � �

where

An Introduction to Type Theory – p.15/46



Proving decidability

	 � � � � �
�

� � � � � �
� � � � � �� � �

� � �
where

	 � � � � � � �
� �

�	 � � �

	 � � � � � � �

� � � �
�

� � �� � � � �

	 � � � � � � � � � � �
�

� � �� � � �

	 � � � � � � � � � �

� 	 � � � � � � 	 � � � � �

An Introduction to Type Theory – p.15/46



Proof or program ?

We can use to effectively decide whether two
numbers are equal.

Reduce to its canonical form.

If it is then the numbers are equal and
proves this.

If it is then the numbers are not equal and
proves this.

is a program whose specification is in its type.

Equality proofs contain no information, hence they do
not have to be calculated at run time.

Hence is not less efficient than an ordinary program
to determine equality of natural numbers.
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Proof or program ?

The same principle can be applied to other problems,
e.g. once we have specified

� � � �	 � � � � � ��� �	

we can implement a primality checker as
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Pattern matching for

�

If a pattern variable has type we can split the
pattern into two, replacing by in the first line and by

in the second, where is a fresh variable.

Since may appear in the type we have to substitute
by and respectively.

We may use the function we are defining recursively
on a subpattern, (e.g. above).

The precise rules governing structural recursion in the
presence of other variables and mutual recursive
definitions are more involved.
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Pattern matching for �

has the same canonical constant as
hence the same rules for pattern matching apply.

Similarily has canonical constants as and
hence the same rules for pattern matching apply.

As a consequence of variables ranging
over and types may occur in the type and have to
be substituted.
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Elimination constants

As a special instance of the pattern matching rules we
will derive elimination constants.

The principle Equivalence of pattern matching and
elimination still holds.

That is every pattern matching proof can be replaced by
one only using elimination constants.
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One stone, two birds

Note that unifies two different principles:

primitive recursion We obtain simply typed primitive
recursion if the motive is constant.

induction When reading as we obtain the
principle of induction.
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A little quiz

What is the construct corresponding to in
programming?

The type corresponding to is called Unit, written .
We didn’t need an elimination constant for , do we
need one for ?
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Alternative: projections

There is an alternative form of elimination for using
projections.

where
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Comparing � � � �

vs. � �

, � �

Which form of elimination is better?

Can we use to implement and ?

Can we use and to implement ?
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The axiom of choice

We can use and to implement the axiom of choice.

where
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The axiom of choice

This shows that the axiom of choice is justified
constructively.

However, in the presence of the principle of excluded
middle it is a sign of non-constructive reasoning.
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Pattern matching for �

The rules for pattern matching for equality proofs
involve unification problems.

Given a pattern variable , there are the following
cases:

The unification problem is unsolvable, in this
cas we can eliminate the pattern.
The unification problem has a most general
solution which is given by a substitution . Then
can be replaced by and the substitution has
to be applied to the type as well.
The unification problem is irreducible, in this
case we cannot reduce the pattern.
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Reducing unification problems

We only consider the special case of terms over here.

Problems of the form can be solved trivially.

Problems of the or are
unsolvable.

Problems of the form , where does not occur in
can be solved and give rise to the substitution

.

The problem can be reduced to .

All other problems are irreducible.
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Question

Can we generalize our proof to

where
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Pattern matching vs. elimination ?

Does the Equivalence of pattern matching and elimination
still hold?
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Uniqueness of equality proofs.
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Uniqueness of equality proofs.

In the early 90ies it was an open problem wether � �	 �

could be derived from	 � � � � �.

In 1993 Hofmann and Streicher showed that does
not hold in the groupoid model of Type Theory, although

can be interpreted.

However, this can be fixed by introducing another
elimination constant.
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Another elimination for �
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Conor’s result

In 1999 Conor McBride showed
as part of his PhD that Equiva-
lence of pattern matching and
elimination holds, when using

.

In fact he showed this in the presence of inductive
families, of which is a special case.
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in logic

How to define ?

There is an alternative inductive definition.
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Leq in LEGO

Inductive [Leq : Nat � Nat � Set]
Constructors

[le0 :

�

n:Nat

	

Leq ze n]
[leS :

�

m,n|Nat

	

(Leq m n)

� (Leq (su m) (su n))];
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Elimination for Leq

decl Leq_elim :

�

C_Leq:

�

x1,x2|Nat

�

(Leq x1 x2)

�

TYPE

�

(

�

n:Nat

�

C_Leq (le0 n)) �

(

�

m,n|Nat

� �

x1:Leq m n

�

(C_Leq x1)

�

C_Leq (leS x1))

�

�

x1,x2|Nat

� �

z:Leq x1 x2

�

C_Leq z

[[C_Leq:

�

x1,x2|Nat

�

(Leq x1 x2)

�

TYPE][f_le0:
�

n1:Nat

�

C_Leq (le0 n1)]

[f_leS:

�

m,n|Nat

� �

x1:Leq m n

�

(C_Leq x1) � C_Leq (leS x1)][n1:Nat][m,n|Nat]

[x1:Leq m n]

Leq_elim C_Leq f_le0 f_leS (le0 n1)

�

f_le0 n1

|| Leq_elim C_Leq f_le0 f_leS (leS x1)

�

f_leS x1 (Leq_elim C_Leq f_le0 f_leS x1)]
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Inductive definitions

Inductive definitions are a basic concept of Type Theory

Inductive types can be imagined as defining a collection
of trees.

We can have infinitary constructors, but they have to be
strictly positive.

There are also size restrictions: there is no type of all
types.
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Loose ends

The role of equality in Type Theory
extensional vs intensional

Universes and reflection
predicative impredicative inconsistent
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