
An Introduction to Type Theory
Part 2

Tallinn, September 2003

http://www.cs.nott.ac.uk/˜txa/tallinn/

Thorsten Altenkirch

University of Nottingham

An Introduction to Type Theory – p.1/46

Plan of the course

1. Intuitionistic logic from a type theoretic perspective

2. Basic constructions of Type Theory

3. Programming with dependent types

An Introduction to Type Theory – p.2/46

Today

Basic constructions of Type Theory

From Logic to Type Theory: .

Example: Decidability of

Proof or program?

Pattern matching and elimination

Uniqueness of equality proofs

Inductive families

Loose ends

An Introduction to Type Theory – p.3/46

Today

Basic constructions of Type Theory

From Logic to Type Theory:

��
�

�

.

Example: Decidability of

Proof or program?

Pattern matching and elimination

Uniqueness of equality proofs

Inductive families

Loose ends

An Introduction to Type Theory – p.3/46

Today

Basic constructions of Type Theory

From Logic to Type Theory:

��
�

�

.

Example: Decidability of �

Proof or program?

Pattern matching and elimination

Uniqueness of equality proofs

Inductive families

Loose ends

An Introduction to Type Theory – p.3/46

Today

Basic constructions of Type Theory

From Logic to Type Theory:

��
�

�

.

Example: Decidability of �

Proof or program?

Pattern matching and elimination

Uniqueness of equality proofs

Inductive families

Loose ends

An Introduction to Type Theory – p.3/46

Today

Basic constructions of Type Theory

From Logic to Type Theory:

��
�

�

.

Example: Decidability of �

Proof or program?

��� �
�

�
�

�
� �

Pattern matching and elimination

Uniqueness of equality proofs

Inductive families

Loose ends

An Introduction to Type Theory – p.3/46

Today

Basic constructions of Type Theory

From Logic to Type Theory:

��
�

�

.

Example: Decidability of �

Proof or program?

��� �
�

�
�

�
� �

Pattern matching and elimination

Uniqueness of equality proofs

Inductive families

Loose ends

An Introduction to Type Theory – p.3/46

Today

Basic constructions of Type Theory

From Logic to Type Theory:

��
�

�

.

Example: Decidability of �

Proof or program?

��� �
�

�
�

�
� �

Pattern matching and elimination

Uniqueness of equality proofs

Inductive families

Loose ends

An Introduction to Type Theory – p.3/46

Today

Basic constructions of Type Theory

From Logic to Type Theory:

��
�

�

.

Example: Decidability of �

Proof or program?

��� �
�

�
�

�
� �

Pattern matching and elimination

Uniqueness of equality proofs

Inductive families

Loose ends

An Introduction to Type Theory – p.3/46

From Logic to Type Theory

In intuitionistic logic constructing proofs is very much
like writing functional programs.

In Type Theory we go one step further:
Proofs = Programs
Propositions = Types

An Introduction to Type Theory – p.4/46

From Logic to Type Theory

In intuitionistic logic constructing proofs is very much
like writing functional programs.

In Type Theory we go one step further:
Proofs = Programs
Propositions = Types

An Introduction to Type Theory – p.4/46

From Logic to Type Theory

In intuitionistic logic constructing proofs is very much
like writing functional programs.

In Type Theory we go one step further:
Proofs = Programs
Propositions = Types

An Introduction to Type Theory – p.4/46

From Logic to Type Theory

We will also make the following indentifications:
Implication ()
Universal quantifications () Pi-types ()
Function types ()
Conjunction ()
Existential quantification () Sigma-types ()
Cartesian product ()
Disjunction
Disjoint union () Disjoint union ()

An Introduction to Type Theory – p.5/46

From Logic to Type Theory

We will also make the following indentifications:

Implication ()
Universal quantifications () Pi-types ()
Function types ()
Conjunction ()
Existential quantification () Sigma-types ()
Cartesian product ()
Disjunction
Disjoint union () Disjoint union ()

An Introduction to Type Theory – p.5/46

From Logic to Type Theory

We will also make the following indentifications:
Implication (�)
Universal quantifications (

�

)

Pi-types ()

Function types (�)

Conjunction ()
Existential quantification () Sigma-types ()
Cartesian product ()
Disjunction
Disjoint union () Disjoint union ()

An Introduction to Type Theory – p.5/46

From Logic to Type Theory

We will also make the following indentifications:
Implication (�)
Universal quantifications (

�

) Pi-types (
�

)
Function types (�)

Conjunction ()
Existential quantification () Sigma-types ()
Cartesian product ()
Disjunction
Disjoint union () Disjoint union ()

An Introduction to Type Theory – p.5/46

From Logic to Type Theory

We will also make the following indentifications:
Implication (�)
Universal quantifications (

�

) Pi-types (
�

)
Function types (�)
Conjunction (

�

)
Existential quantification (

�

)

Sigma-types ()

Cartesian product (�)

Disjunction
Disjoint union () Disjoint union ()

An Introduction to Type Theory – p.5/46

From Logic to Type Theory

We will also make the following indentifications:
Implication (�)
Universal quantifications (

�

) Pi-types (
�

)
Function types (�)
Conjunction (

�

)
Existential quantification (

�

) Sigma-types (

�

)
Cartesian product (�)

Disjunction
Disjoint union () Disjoint union ()

An Introduction to Type Theory – p.5/46

From Logic to Type Theory

We will also make the following indentifications:
Implication (�)
Universal quantifications (

�

) Pi-types (
�

)
Function types (�)
Conjunction (

�

)
Existential quantification (

�

) Sigma-types (

�

)
Cartesian product (�)
Disjunction
Disjoint union (�)

Disjoint union ()

An Introduction to Type Theory – p.5/46

From Logic to Type Theory

We will also make the following indentifications:
Implication (�)
Universal quantifications (

�

) Pi-types (
�

)
Function types (�)
Conjunction (

�

)
Existential quantification (

�

) Sigma-types (

�

)
Cartesian product (�)
Disjunction
Disjoint union (�) Disjoint union (�)

An Introduction to Type Theory – p.5/46

From Logic to Type Theory

Elimination becomes more subtle:

Pattern matching We have to keep track of the steps in
the type.

Elimination constants Get replaced by their dependent
versions.

An Introduction to Type Theory – p.6/46

From Logic to Type Theory

Elimination becomes more subtle:
Pattern matching We have to keep track of the steps in

the type.

Elimination constants Get replaced by their dependent
versions.

An Introduction to Type Theory – p.6/46

From Logic to Type Theory

Elimination becomes more subtle:
Pattern matching We have to keep track of the steps in

the type.
Elimination constants Get replaced by their dependent

versions.

An Introduction to Type Theory – p.6/46

Set theoretic encodings

Let be sets, then:

Let be a set and for each let be a set, then:

An Introduction to Type Theory – p.7/46

Set theoretic encodings

Let

�
�

�

be sets, then:

� � � �

�� �
�

� �� � � � � � � � 	

� � � �

�
 � � � �� � � � �
�

� � � �
�

� �
�

� � �
 	

Let be a set and for each let be a set, then:

An Introduction to Type Theory – p.7/46

Set theoretic encodings

Let

�
�

�

be sets, then:

� � � �

�� �
�

� �� � � � � � � � 	

� � � �

�
 � � � �� � � � �
�

� � � �
�

� �
�

� � �
 	

Let

�

be a set and for each � � �

let
�� � �

be a set, then:

� � � �
�

�� � �

�

�� �
�

� � � � � � � � � �� � � 	

� � � �
�

�� � �

�

�
 � � � � �
�

�� � �� � � � �
�

� � � �� � �
�

� �
�

� � �
 	

An Introduction to Type Theory – p.7/46

Example: Decidability of �

In intuitionistic arithmetic we can prove

where

We will use this example to motivate the idea that
proofs = programs.

An Introduction to Type Theory – p.8/46

Example: Decidability of �
In intuitionistic arithmetic we can prove

��
�

� � � � � �
� � � � �� � � �

� � �
where � �

� � � � � � � � �
�

� � � � � � �� ���	

We will use this example to motivate the idea that
proofs = programs.

An Introduction to Type Theory – p.8/46

Example: Decidability of �
In intuitionistic arithmetic we can prove

��
�

� � � � � �
� � � � �� � � �

� � �
where � �

� � � � � � � � �
�

� � � � � � �� ���	
We will use this example to motivate the idea that
proofs = programs.

An Introduction to Type Theory – p.8/46

Natural Numbers

How to form ?

How to construct ?

An Introduction to Type Theory – p.9/46

Natural Numbers

How to form ?

How to construct ?

An Introduction to Type Theory – p.9/46

Natural Numbers

How to form ?

��� � � ��� �	

How to construct ?

An Introduction to Type Theory – p.9/46

Natural Numbers

How to form ?

��� � � ��� �	
How to construct ?

An Introduction to Type Theory – p.9/46

Natural Numbers

How to form ?

��� � � ��� �	
How to construct ?

� � � � �

� � � � �

� � � ��� �

An Introduction to Type Theory – p.9/46

Equality

How to form ?

How to prove ?

An Introduction to Type Theory – p.10/46

Equality

How to form ?

How to prove ?

An Introduction to Type Theory – p.10/46

Equality

How to form ?

� � ��� �	 �
�

� � �

� � � � ��� �	

How to prove ?

An Introduction to Type Theory – p.10/46

Equality

How to form ?

� � ��� �	 �
�

� � �

� � � � ��� �	
How to prove ?

An Introduction to Type Theory – p.10/46

Equality

How to form ?

� � ��� �	 �
�

� � �

� � � � ��� �	
How to prove ?

� � ��� �	 � � �

�	 � � � � � �

An Introduction to Type Theory – p.10/46

Proving decidablity

We will present a proof

using pattern matching.

We will discuss the rules for pattern matching later.

An Introduction to Type Theory – p.11/46

Proving decidablity

We will present a proof

	 � � � � �
�

� � ��� � �
� � � � � �� � �

� � �

using pattern matching.

We will discuss the rules for pattern matching later.

An Introduction to Type Theory – p.11/46

Proving decidablity

We will present a proof

	 � � � � �
�

� � ��� � �
� � � � � �� � �

� � �

using pattern matching.

We will discuss the rules for pattern matching later.

An Introduction to Type Theory – p.11/46

Peano’s axioms

where
empty pattern

where
empty pattern

An Introduction to Type Theory – p.12/46

Peano’s axioms

� � �� � � � � � ��� � �
� � � � � � � �� ���	

where
empty pattern

where
empty pattern

An Introduction to Type Theory – p.12/46

Peano’s axioms

� � �� � � � � � ��� � �
� � � � � � � �� ���	

where
empty pattern

where
empty pattern

An Introduction to Type Theory – p.12/46

Peano’s axioms

� � �� � � � � � ��� � �
� � � � � � � �� ���	

where
empty pattern

� � �� � � � � � � ��� � �
� � � � � � � �� ���	

where
empty pattern

An Introduction to Type Theory – p.12/46

Peano’s axioms

� � �� � � � � � ��� � �
� � � � � � � �� ���	

where
empty pattern

� � �� � � � � � � ��� � �
� � � � � � � �� ���	

where
empty pattern

An Introduction to Type Theory – p.12/46

Peano’s axioms

where

where

An Introduction to Type Theory – p.13/46

Peano’s axioms

�	 � � � � � �
�

� � � � � �
� � � � � � � � � � �

where

where

An Introduction to Type Theory – p.13/46

Peano’s axioms

�	 � � � � � �
�

� � � � � �
� � � � � � � � � � �

where

�	 � � � � � �
�	 � � �

� �	 � � � � �

where

An Introduction to Type Theory – p.13/46

Peano’s axioms

�	 � � � � � �
�

� � � � � �
� � � � � � � � � � �

where

�	 � � � � � �
�	 � � �

� �	 � � � � �

� � � � � � �
�

� � ��� � �
� � � � � � � � � � �

where

An Introduction to Type Theory – p.13/46

Peano’s axioms

�	 � � � � � �
�

� � � � � �
� � � � � � � � � � �

where

�	 � � � � � �
�	 � � �

� �	 � � � � �

� � � � � � �
�

� � ��� � �
� � � � � � � � � � �

where

� � � � � � �
�	 � � � � � �

� �	 � �

An Introduction to Type Theory – p.13/46

Proving decidability

where

An Introduction to Type Theory – p.14/46

Proving decidability

	 � � � � � �
�

� � � � � �
� � � � � � �� � �

� � � � �� � � � � � � � �� � � �
� � � � �

where

An Introduction to Type Theory – p.14/46

Proving decidability

	 � � � � � �
�

� � � � � �
� � � � � � �� � �

� � � � �� � � � � � � � �� � � �
� � � � �

where

	 � � � � � � � �
� � �

� � �
� �

�	 � � � � � � �

	 � � � � � � � � �

 �

� � � �
� �� �

 � � � � � � �
 � �

An Introduction to Type Theory – p.14/46

Proving decidability

where

An Introduction to Type Theory – p.15/46

Proving decidability

	 � � � � �
�

� � � � � �
� � � � � �� � �

� � �

where

An Introduction to Type Theory – p.15/46

Proving decidability

	 � � � � �
�

� � � � � �
� � � � � �� � �

� � �
where

	 � � � � � � �
� �

�	 � � �

	 � � � � � � �

� � � �
�

� � �� � � � �

	 � � � � � � � � � � �
�

� � �� � � �

	 � � � � � � � � � �

� 	 � � � � � � 	 � � � � �

An Introduction to Type Theory – p.15/46

Proof or program ?

We can use to effectively decide whether two
numbers are equal.

Reduce to its canonical form.

If it is then the numbers are equal and
proves this.

If it is then the numbers are not equal and
proves this.

is a program whose specification is in its type.

Equality proofs contain no information, hence they do
not have to be calculated at run time.

Hence is not less efficient than an ordinary program
to determine equality of natural numbers.

An Introduction to Type Theory – p.16/46

Proof or program ?

We can use	 � �

to effectively decide whether two
numbers �

�

� � ��� �

are equal.

Reduce to its canonical form.

If it is then the numbers are equal and
proves this.

If it is then the numbers are not equal and
proves this.

is a program whose specification is in its type.

Equality proofs contain no information, hence they do
not have to be calculated at run time.

Hence is not less efficient than an ordinary program
to determine equality of natural numbers.

An Introduction to Type Theory – p.16/46

Proof or program ?

We can use	 � �

to effectively decide whether two
numbers �

�

� � ��� �

are equal.

Reduce	 � � � � to its canonical form.

If it is then the numbers are equal and
proves this.

If it is then the numbers are not equal and
proves this.

is a program whose specification is in its type.

Equality proofs contain no information, hence they do
not have to be calculated at run time.

Hence is not less efficient than an ordinary program
to determine equality of natural numbers.

An Introduction to Type Theory – p.16/46

Proof or program ?

We can use	 � �

to effectively decide whether two
numbers �

�

� � ��� �

are equal.

Reduce	 � � � � to its canonical form.

If it is

� �
� � then the numbers are equal and � � � � �

proves this.

If it is then the numbers are not equal and
proves this.

is a program whose specification is in its type.

Equality proofs contain no information, hence they do
not have to be calculated at run time.

Hence is not less efficient than an ordinary program
to determine equality of natural numbers.

An Introduction to Type Theory – p.16/46

Proof or program ?

We can use	 � �

to effectively decide whether two
numbers �

�

� � ��� �

are equal.

Reduce	 � � � � to its canonical form.

If it is

� �
� � then the numbers are equal and � � � � �

proves this.

If it is

� � �

then the numbers are not equal and

 � � �
� �

proves this.

is a program whose specification is in its type.

Equality proofs contain no information, hence they do
not have to be calculated at run time.

Hence is not less efficient than an ordinary program
to determine equality of natural numbers.

An Introduction to Type Theory – p.16/46

Proof or program ?

We can use	 � �

to effectively decide whether two
numbers �

�

� � ��� �

are equal.

Reduce	 � � � � to its canonical form.

If it is

� �
� � then the numbers are equal and � � � � �

proves this.

If it is

� � �

then the numbers are not equal and

 � � �
� �

proves this.

	 � �

is a program whose specification is in its type.

Equality proofs contain no information, hence they do
not have to be calculated at run time.

Hence is not less efficient than an ordinary program
to determine equality of natural numbers.

An Introduction to Type Theory – p.16/46

Proof or program ?

We can use	 � �

to effectively decide whether two
numbers �

�

� � ��� �

are equal.

Reduce	 � � � � to its canonical form.

If it is

� �
� � then the numbers are equal and � � � � �

proves this.

If it is

� � �

then the numbers are not equal and

 � � �
� �

proves this.

	 � �

is a program whose specification is in its type.

Equality proofs contain no information, hence they do
not have to be calculated at run time.

Hence is not less efficient than an ordinary program
to determine equality of natural numbers.

An Introduction to Type Theory – p.16/46

Proof or program ?

We can use	 � �

to effectively decide whether two
numbers �

�

� � ��� �

are equal.

Reduce	 � � � � to its canonical form.

If it is

� �
� � then the numbers are equal and � � � � �

proves this.

If it is

� � �

then the numbers are not equal and

 � � �
� �

proves this.

	 � �

is a program whose specification is in its type.

Equality proofs contain no information, hence they do
not have to be calculated at run time.

Hence	 � �

is not less efficient than an ordinary program
to determine equality of natural numbers.

An Introduction to Type Theory – p.16/46

Proof or program ?

The same principle can be applied to other problems,
e.g. once we have specified

� � � �	 � � � � � ��� �	

we can implement a primality checker as

An Introduction to Type Theory – p.17/46

Proof or program ?

The same principle can be applied to other problems,
e.g. once we have specified

� � � �	 � � � � � ��� �	
we can implement a primality checker as

� � � � � �	 � � � � � � � �
� � � � �	 � � �� � � � � �	 � �

An Introduction to Type Theory – p.17/46

Pattern matching for

�

If a pattern variable has type we can split the
pattern into two, replacing by in the first line and by

in the second, where is a fresh variable.

Since may appear in the type we have to substitute
by and respectively.

We may use the function we are defining recursively
on a subpattern, (e.g. above).

The precise rules governing structural recursion in the
presence of other variables and mutual recursive
definitions are more involved.

An Introduction to Type Theory – p.18/46

Pattern matching for

�

If a pattern variable � has type

� � �

we can split the
pattern into two, replacing � by

�

in the first line and by� � in the second, where � � ��� �

is a fresh variable.

Since may appear in the type we have to substitute
by and respectively.

We may use the function we are defining recursively
on a subpattern, (e.g. above).

The precise rules governing structural recursion in the
presence of other variables and mutual recursive
definitions are more involved.

An Introduction to Type Theory – p.18/46

Pattern matching for

�

If a pattern variable � has type

� � �

we can split the
pattern into two, replacing � by

�

in the first line and by� � in the second, where � � ��� �

is a fresh variable.

Since � may appear in the type we have to substitute �

by

�

and � � respectively.

We may use the function we are defining recursively
on a subpattern, (e.g. above).

The precise rules governing structural recursion in the
presence of other variables and mutual recursive
definitions are more involved.

An Introduction to Type Theory – p.18/46

Pattern matching for

�

If a pattern variable � has type

� � �

we can split the
pattern into two, replacing � by

�

in the first line and by� � in the second, where � � ��� �

is a fresh variable.

Since � may appear in the type we have to substitute �

by

�

and � � respectively.

We may use the function

we are defining recursively
on a subpattern, (e.g. � above).

The precise rules governing structural recursion in the
presence of other variables and mutual recursive
definitions are more involved.

An Introduction to Type Theory – p.18/46

Pattern matching for

�

If a pattern variable � has type

� � �

we can split the
pattern into two, replacing � by

�

in the first line and by� � in the second, where � � ��� �

is a fresh variable.

Since � may appear in the type we have to substitute �

by

�

and � � respectively.

We may use the function

we are defining recursively
on a subpattern, (e.g. � above).

The precise rules governing structural recursion in the
presence of other variables and mutual recursive
definitions are more involved.

An Introduction to Type Theory – p.18/46

Pattern matching for �

has the same canonical constant as
hence the same rules for pattern matching apply.

Similarily has canonical constants as and
hence the same rules for pattern matching apply.

As a consequence of variables ranging
over and types may occur in the type and have to
be substituted.

An Introduction to Type Theory – p.19/46

Pattern matching for �

�
� � �

�
�

has the same canonical constant

� �
�

� �
as

�

hence the same rules for pattern matching apply.

Similarily has canonical constants as and
hence the same rules for pattern matching apply.

As a consequence of variables ranging
over and types may occur in the type and have to
be substituted.

An Introduction to Type Theory – p.19/46

Pattern matching for �

�
� � �

�
�

has the same canonical constant

� �
�

� �
as

�

hence the same rules for pattern matching apply.

Similarily

� � �

has canonical constants
� �
�
�

� � � as

�

and
hence the same rules for pattern matching apply.

As a consequence of variables ranging
over and types may occur in the type and have to
be substituted.

An Introduction to Type Theory – p.19/46

Pattern matching for �

�
� � �

�
�

has the same canonical constant

� �
�

� �
as

�

hence the same rules for pattern matching apply.

Similarily

� � �

has canonical constants
� �
�
�

� � � as

�

and
hence the same rules for pattern matching apply.

As a consequence of

� � � � � ��� �	 variables ranging
over

�

and � types may occur in the type and have to
be substituted.

An Introduction to Type Theory – p.19/46

Elimination constants

As a special instance of the pattern matching rules we
will derive elimination constants.

The principle Equivalence of pattern matching and
elimination still holds.

That is every pattern matching proof can be replaced by
one only using elimination constants.

An Introduction to Type Theory – p.20/46

Elimination constants

As a special instance of the pattern matching rules we
will derive elimination constants.

The principle Equivalence of pattern matching and
elimination still holds.

That is every pattern matching proof can be replaced by
one only using elimination constants.

An Introduction to Type Theory – p.20/46

Elimination constants

As a special instance of the pattern matching rules we
will derive elimination constants.

The principle Equivalence of pattern matching and
elimination still holds.

That is every pattern matching proof can be replaced by
one only using elimination constants.

An Introduction to Type Theory – p.20/46

Elimination constants

As a special instance of the pattern matching rules we
will derive elimination constants.

The principle Equivalence of pattern matching and
elimination still holds.

That is every pattern matching proof can be replaced by
one only using elimination constants.

An Introduction to Type Theory – p.20/46

Elimination for

�

where

An Introduction to Type Theory – p.21/46

Elimination for

�

� � � � � � ��� �	 � � � � � � � � � ��� � �
� � � � � � � � � � ��� �

�� � � � � � � � � � � � �

where

An Introduction to Type Theory – p.21/46

Elimination for

�

� � � � � � ��� �	 � � � � � � � � � ��� � �
� � � � � � � � � � ��� �

�� � � � � � � � � � � � �
where

�� � � � � � � � � � �

�� � � � � � � � � � � �

� � � �
�� � � � � � � � � �

An Introduction to Type Theory – p.21/46

One stone, two birds

Note that unifies two different principles:

primitive recursion We obtain simply typed primitive
recursion if the motive is constant.

induction When reading as we obtain the
principle of induction.

An Introduction to Type Theory – p.22/46

One stone, two birds

Note that �� � � � � � unifies two different principles:

primitive recursion We obtain simply typed primitive
recursion if the motive is constant.

induction When reading as we obtain the
principle of induction.

An Introduction to Type Theory – p.22/46

One stone, two birds

Note that �� � � � � � unifies two different principles:

primitive recursion We obtain simply typed primitive
recursion if the motive

�

is constant.

induction When reading as we obtain the
principle of induction.

An Introduction to Type Theory – p.22/46

One stone, two birds

Note that �� � � � � � unifies two different principles:

primitive recursion We obtain simply typed primitive
recursion if the motive

�

is constant.

induction When reading

��� �	 as

� � � � we obtain the
principle of induction.

An Introduction to Type Theory – p.22/46

Elimination for

where

An Introduction to Type Theory – p.23/46

Elimination for

�
�

� � ��� �	 � � � � � � � � ��� �	

� � � � � �
�

� � � �
� � �

� � � � � �
�

� � � � �
� �

� � � � �
� � �� � � � � �

� � � � �

where

An Introduction to Type Theory – p.23/46

Elimination for

�
�

� � ��� �	 � � � � � � � � ��� �	

� � � � � �
�

� � � �
� � �

� � � � � �
�

� � � � �
� �

� � � � �
� � �� � � � � �

� � � � �

where

� � �� � � � � �

�
� � �
� � �

� � �

� � �� � � � � �

�
� � � �

� �

� �

�

An Introduction to Type Theory – p.23/46

A little quiz

What is the construct corresponding to in
programming?

The type corresponding to is called Unit, written .
We didn’t need an elimination constant for , do we
need one for ?

An Introduction to Type Theory – p.24/46

A little quiz

What is the construct corresponding to � � �� � � � � in
programming?

The type corresponding to is called Unit, written .
We didn’t need an elimination constant for , do we
need one for ?

An Introduction to Type Theory – p.24/46

A little quiz

What is the construct corresponding to � � �� � � � � in
programming?

The type corresponding to

� � �	 is called Unit, written

�

.
We didn’t need an elimination constant for

� � �	 , do we
need one for

�

?

An Introduction to Type Theory – p.24/46

Elimination for

where

An Introduction to Type Theory – p.25/46

Elimination for

� � ��� �	 � � � � ��� �	

� � � � � � �
�

� � � � ��� �	

 � � � � �
�

� � � � � �
� � �
�

� �

� � � � � �
�

� �

� � � �� � � � �
 � � � �

where

An Introduction to Type Theory – p.25/46

Elimination for

� � ��� �	 � � � � ��� �	

� � � � � � �
�

� � � � ��� �	

 � � � � �
�

� � � � � �
� � �
�

� �

� � � � � �
�

� �

� � � �� � � � �
 � � � �

where

� � � �� � � � �
 � �
�

� �

�

 � �

An Introduction to Type Theory – p.25/46

Alternative: projections

There is an alternative form of elimination for using
projections.

where

An Introduction to Type Theory – p.26/46

Alternative: projections

There is an alternative form of elimination for

�

using
projections.

where

An Introduction to Type Theory – p.26/46

Alternative: projections

There is an alternative form of elimination for

�

using
projections.

� � ��� �	 � � � � ��� �	 � � � � � �
�

� �

�� � � � � � �
� � � � � �� � � �

where

An Introduction to Type Theory – p.26/46

Alternative: projections

There is an alternative form of elimination for

�

using
projections.

� � ��� �	 � � � � ��� �	 � � � � � �
�

� �

�� � � � � � �
� � � � � �� � � �

where

�� � � �
�

� �

� �

� �
� � �
�

� �

� �

An Introduction to Type Theory – p.26/46

Comparing � � � �

vs. � �

, � �

Which form of elimination is better?

Can we use to implement and ?

Can we use and to implement ?

An Introduction to Type Theory – p.27/46

Comparing � � � �

vs. � �

, � �
Which form of elimination is better?

Can we use to implement and ?

Can we use and to implement ?

An Introduction to Type Theory – p.27/46

Comparing � � � �

vs. � �

, � �
Which form of elimination is better?

Can we use � � � �� � � � � to implement

�� �

and � �
�

?

Can we use and to implement ?

An Introduction to Type Theory – p.27/46

The axiom of choice

We can use and to implement the axiom of choice.

where

An Introduction to Type Theory – p.28/46

The axiom of choice

We can use

�� �

and � �
�

to implement the axiom of choice.

where

An Introduction to Type Theory – p.28/46

The axiom of choice

We can use

�� �

and � �
�

to implement the axiom of choice.

�
�

� � ��� �	 � � � � � � ��� �	
 � � � � �
�

� � � �
�

� � �

�
�

� � �	
 � �� � � � �
�

� � � �
�

� � � � � �

where

An Introduction to Type Theory – p.28/46

The axiom of choice

We can use

�� �

and � �
�

to implement the axiom of choice.

�
�

� � ��� �	 � � � � � � ��� �	
 � � � � �
�

� � � �
�

� � �

�
�

� � �	
 � �� � � � �
�

� � � �
�

� � � � � �

where

�
�

� � �	

�

� � � � �
�

�� � �
 � �
�

� � � �
� � �

� �
 � � �

An Introduction to Type Theory – p.28/46

The axiom of choice

This shows that the axiom of choice is justified
constructively.

However, in the presence of the principle of excluded
middle it is a sign of non-constructive reasoning.

An Introduction to Type Theory – p.29/46

The axiom of choice

This shows that the axiom of choice is justified
constructively.

However, in the presence of the principle of excluded
middle it is a sign of non-constructive reasoning.

An Introduction to Type Theory – p.29/46

The axiom of choice

This shows that the axiom of choice is justified
constructively.

However, in the presence of the principle of excluded
middle it is a sign of non-constructive reasoning.

An Introduction to Type Theory – p.29/46

Pattern matching for �

The rules for pattern matching for equality proofs
involve unification problems.

Given a pattern variable , there are the following
cases:

The unification problem is unsolvable, in this
cas we can eliminate the pattern.
The unification problem has a most general
solution which is given by a substitution . Then
can be replaced by and the substitution has
to be applied to the type as well.
The unification problem is irreducible, in this
case we cannot reduce the pattern.

An Introduction to Type Theory – p.30/46

Pattern matching for �

The rules for pattern matching for equality proofs
involve unification problems.

Given a pattern variable , there are the following
cases:

The unification problem is unsolvable, in this
cas we can eliminate the pattern.
The unification problem has a most general
solution which is given by a substitution . Then
can be replaced by and the substitution has
to be applied to the type as well.
The unification problem is irreducible, in this
case we cannot reduce the pattern.

An Introduction to Type Theory – p.30/46

Pattern matching for �

The rules for pattern matching for equality proofs
involve unification problems.

Given a pattern variable � � � � �

, there are the following
cases:

The unification problem is unsolvable, in this
cas we can eliminate the pattern.
The unification problem has a most general
solution which is given by a substitution . Then
can be replaced by and the substitution has
to be applied to the type as well.
The unification problem is irreducible, in this
case we cannot reduce the pattern.

An Introduction to Type Theory – p.30/46

Pattern matching for �

The rules for pattern matching for equality proofs
involve unification problems.

Given a pattern variable � � � � �

, there are the following
cases:

The unification problem � � �
is unsolvable, in this

cas we can eliminate the pattern.

The unification problem has a most general
solution which is given by a substitution . Then
can be replaced by and the substitution has
to be applied to the type as well.
The unification problem is irreducible, in this
case we cannot reduce the pattern.

An Introduction to Type Theory – p.30/46

Pattern matching for �

The rules for pattern matching for equality proofs
involve unification problems.

Given a pattern variable � � � � �

, there are the following
cases:

The unification problem � � �
is unsolvable, in this

cas we can eliminate the pattern.
The unification problem � � �

has a most general
solution which is given by a substitution �. Then �

can be replaced by �	 � � � and the substitution � has
to be applied to the type as well.

The unification problem is irreducible, in this
case we cannot reduce the pattern.

An Introduction to Type Theory – p.30/46

Pattern matching for �

The rules for pattern matching for equality proofs
involve unification problems.

Given a pattern variable � � � � �

, there are the following
cases:

The unification problem � � �
is unsolvable, in this

cas we can eliminate the pattern.
The unification problem � � �

has a most general
solution which is given by a substitution �. Then �

can be replaced by �	 � � � and the substitution � has
to be applied to the type as well.
The unification problem � � �

is irreducible, in this
case we cannot reduce the pattern.

An Introduction to Type Theory – p.30/46

Reducing unification problems

We only consider the special case of terms over here.

Problems of the form can be solved trivially.

Problems of the or are
unsolvable.

Problems of the form , where does not occur in
can be solved and give rise to the substitution

.

The problem can be reduced to .

All other problems are irreducible.

An Introduction to Type Theory – p.31/46

Reducing unification problems

We only consider the special case of terms over
� � �

here.

Problems of the form can be solved trivially.

Problems of the or are
unsolvable.

Problems of the form , where does not occur in
can be solved and give rise to the substitution

.

The problem can be reduced to .

All other problems are irreducible.

An Introduction to Type Theory – p.31/46

Reducing unification problems

We only consider the special case of terms over
� � �

here.

Problems of the form � � � can be solved trivially.

Problems of the or are
unsolvable.

Problems of the form , where does not occur in
can be solved and give rise to the substitution

.

The problem can be reduced to .

All other problems are irreducible.

An Introduction to Type Theory – p.31/46

Reducing unification problems

We only consider the special case of terms over
� � �

here.

Problems of the form � � � can be solved trivially.

Problems of the

� � � � or � � � � � �
� � �

� � � �
� � �

� �

are
unsolvable.

Problems of the form , where does not occur in
can be solved and give rise to the substitution

.

The problem can be reduced to .

All other problems are irreducible.

An Introduction to Type Theory – p.31/46

Reducing unification problems

We only consider the special case of terms over
� � �

here.

Problems of the form � � � can be solved trivially.

Problems of the

� � � � or � � � � � �
� � �

� � � �
� � �

� �

are
unsolvable.

Problems of the form � � � , where � does not occur in� can be solved and give rise to the substitution

�
�

�
�

� � .

The problem can be reduced to .

All other problems are irreducible.

An Introduction to Type Theory – p.31/46

Reducing unification problems

We only consider the special case of terms over
� � �

here.

Problems of the form � � � can be solved trivially.

Problems of the

� � � � or � � � � � �
� � �

� � � �
� � �

� �

are
unsolvable.

Problems of the form � � � , where � does not occur in� can be solved and give rise to the substitution

�
�

�
�

� � .

The problem � � � � � can be reduced to � � �.

All other problems are irreducible.

An Introduction to Type Theory – p.31/46

Reducing unification problems

We only consider the special case of terms over
� � �

here.

Problems of the form � � � can be solved trivially.

Problems of the

� � � � or � � � � � �
� � �

� � � �
� � �

� �

are
unsolvable.

Problems of the form � � � , where � does not occur in� can be solved and give rise to the substitution

�
�

�
�

� � .

The problem � � � � � can be reduced to � � �.
All other problems are irreducible.

An Introduction to Type Theory – p.31/46

Question

Can we generalize our proof to

where

An Introduction to Type Theory – p.32/46

Question

Can we generalize our proof

� � � � to

�
�

� � ��� �	
 � � � �

� � � � � �
�

� � �
�

�
 � �

 � � � � � �

where

An Introduction to Type Theory – p.32/46

Question

Can we generalize our proof

� � � � to

�
�

� � ��� �	
 � � � �

� � � � � �
�

� � �
�

�
 � �

 � � � � � �

where

� � � � � �
�	 � �
 � � �

� �	 � � �

An Introduction to Type Theory – p.32/46

Elimination for �

where

An Introduction to Type Theory – p.33/46

Elimination for �

� � ��� �	 � � � �
�

� � �
�

� � � � � � ��� �	

 � � � � �
�

� � � �
�	 � � �

�
�

� � � � � � � �

	 � � � � �
 � � � � � � � �

where

An Introduction to Type Theory – p.33/46

Elimination for �

� � ��� �	 � � � �
�

� � �
�

� � � � � � ��� �	

 � � � � �
�

� � � �
�	 � � �

�
�

� � � � � � � �

	 � � � � �
 � � � � � � � �

where

	 � � � � �
 � � �
�	 � � �

�

 �

An Introduction to Type Theory – p.33/46

Pattern matching vs. elimination ?

Does the Equivalence of pattern matching and elimination
still hold?

An Introduction to Type Theory – p.34/46

Uniqueness of equality proofs.

where

An Introduction to Type Theory – p.35/46

Uniqueness of equality proofs.

� � ��� �	 �
�

� � � �
�

� � � � �

� �	 � � � � � � � � �

where

An Introduction to Type Theory – p.35/46

Uniqueness of equality proofs.

� � ��� �	 �
�

� � � �
�

� � � � �

� �	 � � � � � � � � �

where

� �	 � � � �
�	 � � � �
�	 � � �

� �	 ��
�	 � � �

An Introduction to Type Theory – p.35/46

Uniqueness of equality proofs.

In the early 90ies it was an open problem wether � �	 �

could be derived from	 � � � � �.

In 1993 Hofmann and Streicher showed that does
not hold in the groupoid model of Type Theory, although

can be interpreted.

However, this can be fixed by introducing another
elimination constant.

An Introduction to Type Theory – p.36/46

Uniqueness of equality proofs.

In the early 90ies it was an open problem wether � �	 �

could be derived from	 � � � � �.

In 1993 Hofmann and Streicher showed that � �	 � does
not hold in the groupoid model of Type Theory, although	 � � � � � can be interpreted.

However, this can be fixed by introducing another
elimination constant.

An Introduction to Type Theory – p.36/46

Uniqueness of equality proofs.

In the early 90ies it was an open problem wether � �	 �

could be derived from	 � � � � �.

In 1993 Hofmann and Streicher showed that � �	 � does
not hold in the groupoid model of Type Theory, although	 � � � � � can be interpreted.

However, this can be fixed by introducing another
elimination constant.

An Introduction to Type Theory – p.36/46

Another elimination for �

where

An Introduction to Type Theory – p.37/46

Another elimination for �

� � ��� �	 � � � � � �
�

� � � � � � ��� �	

 � � � � �
�

� �
�	 � � �

� � � � � � � �

	 � � � � �
�
 � � � � � �

where

An Introduction to Type Theory – p.37/46

Another elimination for �

� � ��� �	 � � � � � �
�

� � � � � � ��� �	

 � � � � �
�

� �
�	 � � �

� � � � � � � �

	 � � � � �
�
 � � � � � �

where

	 � � � � � �
 � �
�	 � � �

�

 �

An Introduction to Type Theory – p.37/46

Uniqueness of equality proofs.

where

An Introduction to Type Theory – p.38/46

Uniqueness of equality proofs.

� � ��� �	 �
�

� � � �
�

� � � � �

� �	 � � � � � � � � �

where

An Introduction to Type Theory – p.38/46

Uniqueness of equality proofs.

� � ��� �	 �
�

� � � �
�

� � � � �

� �	 � � � � � � � � �

where

� �	 � � � � � � 	 � � � � � � � � � � �	 � � � � � � �� � � � �	 ��
�	 � � � � � � �

An Introduction to Type Theory – p.38/46

Conor’s result

In 1999 Conor McBride showed
as part of his PhD that Equiva-
lence of pattern matching and
elimination holds, when using

.

In fact he showed this in the presence of inductive
families, of which is a special case.

An Introduction to Type Theory – p.39/46

Conor’s result

In 1999 Conor McBride showed
as part of his PhD that Equiva-
lence of pattern matching and
elimination holds, when using	 � � � � � �

.

In fact he showed this in the presence of inductive
families, of which is a special case.

An Introduction to Type Theory – p.39/46

Conor’s result

In 1999 Conor McBride showed
as part of his PhD that Equiva-
lence of pattern matching and
elimination holds, when using	 � � � � � �

.

In fact he showed this in the presence of inductive
families, of which � is a special case.

An Introduction to Type Theory – p.39/46

in logic

How to define ?

There is an alternative inductive definition.

An Introduction to Type Theory – p.40/46

in logic

How to define

� � � � � � ��� � � � � � � ?

There is an alternative inductive definition.

An Introduction to Type Theory – p.40/46

in logic

How to define

� � � � � � ��� � � � � � � ?

� � � � �� � � � � � � � � � �

There is an alternative inductive definition.

An Introduction to Type Theory – p.40/46

in logic

How to define

� � � � � � ��� � � � � � � ?

� � � � �� � � � � � � � � � �

There is an alternative inductive definition.

� � ��� �

� � �

� � �

� � � � �

An Introduction to Type Theory – p.40/46

in Type Theory

How to form ?

How to construct?

An Introduction to Type Theory – p.41/46

in Type Theory

How to form ?

How to construct?

An Introduction to Type Theory – p.41/46

in Type Theory

How to form ?

�
�

� � ��� �

� � � � ��� �	

How to construct?

An Introduction to Type Theory – p.41/46

in Type Theory

How to form ?

�
�

� � ��� �

� � � � ��� �	
How to construct?

An Introduction to Type Theory – p.41/46

in Type Theory

How to form ?

�
�

� � ��� �

� � � � ��� �	
How to construct?

� � � � �

�	 � � � � � �

� � � � �

�	 � � � � � � � � � � � �

An Introduction to Type Theory – p.41/46

Pattern matching for

where

An Introduction to Type Theory – p.42/46

Pattern matching for

� �� �� �	 � ��
�

�
�

� � � � � �
� � � � � �� � � � � �� � �

where

An Introduction to Type Theory – p.42/46

Pattern matching for

� �� �� �	 � ��
�

�
�

� � � � � �
� � � � � �� � � � � �� � �

where

� �� �� �	 � � � � �	 � � � � � �	 � �

� �� �� �	 � � � � � � � � � � � � � �	 � � � � �	 � � �

� �	 � � � �� �� �	 � � � � � �

An Introduction to Type Theory – p.42/46

Leq in LEGO

Inductive [Leq : Nat � Nat � Set]
Constructors

[le0 :

�

n:Nat

	

Leq ze n]
[leS :

�

m,n|Nat

	

(Leq m n)

� (Leq (su m) (su n))];

An Introduction to Type Theory – p.43/46

Elimination for Leq

decl Leq_elim :

�

C_Leq:

�

x1,x2|Nat

�

(Leq x1 x2)

�

TYPE

�

(

�

n:Nat

�

C_Leq (le0 n)) �

(

�

m,n|Nat

� �

x1:Leq m n

�

(C_Leq x1)

�

C_Leq (leS x1))

�

�

x1,x2|Nat

� �

z:Leq x1 x2

�

C_Leq z

[[C_Leq:

�

x1,x2|Nat

�

(Leq x1 x2)

�

TYPE][f_le0:
�

n1:Nat

�

C_Leq (le0 n1)]

[f_leS:

�

m,n|Nat

� �

x1:Leq m n

�

(C_Leq x1) � C_Leq (leS x1)][n1:Nat][m,n|Nat]

[x1:Leq m n]

Leq_elim C_Leq f_le0 f_leS (le0 n1)

�

f_le0 n1

|| Leq_elim C_Leq f_le0 f_leS (leS x1)

�

f_leS x1 (Leq_elim C_Leq f_le0 f_leS x1)]

An Introduction to Type Theory – p.44/46

Inductive definitions

Inductive definitions are a basic concept of Type Theory

Inductive types can be imagined as defining a collection
of trees.

We can have infinitary constructors, but they have to be
strictly positive.

There are also size restrictions: there is no type of all
types.

An Introduction to Type Theory – p.45/46

Inductive definitions

Inductive definitions are a basic concept of Type Theory

Inductive types can be imagined as defining a collection
of trees.

We can have infinitary constructors, but they have to be
strictly positive.

There are also size restrictions: there is no type of all
types.

An Introduction to Type Theory – p.45/46

Inductive definitions

Inductive definitions are a basic concept of Type Theory

Inductive types can be imagined as defining a collection
of trees.

We can have infinitary constructors, but they have to be
strictly positive.

There are also size restrictions: there is no type of all
types.

An Introduction to Type Theory – p.45/46

Inductive definitions

Inductive definitions are a basic concept of Type Theory

Inductive types can be imagined as defining a collection
of trees.

We can have infinitary constructors, but they have to be
strictly positive.

There are also size restrictions: there is no type of all
types.

An Introduction to Type Theory – p.45/46

Inductive definitions

Inductive definitions are a basic concept of Type Theory

Inductive types can be imagined as defining a collection
of trees.

We can have infinitary constructors, but they have to be
strictly positive.

There are also size restrictions: there is no type of all
types.

An Introduction to Type Theory – p.45/46

Loose ends

The role of equality in Type Theory
extensional vs intensional

Universes and reflection
predicative impredicative inconsistent

An Introduction to Type Theory – p.46/46

Loose ends

The role of equality in Type Theory
extensional vs intensional

Universes and reflection
predicative impredicative inconsistent

An Introduction to Type Theory – p.46/46

Loose ends

The role of equality in Type Theory
extensional vs intensional

Universes and reflection
predicative impredicative inconsistent

An Introduction to Type Theory – p.46/46

	Plan of the course
	Today
	From Logic to Type Theory
	From Logic to Type Theory
	From Logic to Type Theory
	Set theoretic encodings
	Example: Decidability of $Req $
	Natural Numbers
	Equality
	Proving decidablity
	Peano's axioms
	Peano's axioms
	Proving decidability
	Proving decidability
	Proof or program ?
	Proof or program ?
	Pattern matching for $RNat $
	Pattern matching for $RSig ,Rplus $
	Elimination constants
	Elimination for $RNat $
	One stone, two birds
	Elimination for $Rplus $
	A little quiz
	Elimination for $Sigma $
	Alternative: projections
	Comparing $sigmaElim $ vs. $�st $,$snd $
	The axiom of choice
	The axiom of choice
	Pattern matching for $Req $
	Reducing unification problems
	Question
	Elimination for $Req $
	Pattern matching vs. elimination ?
	Uniqueness of equality proofs.
	Uniqueness of equality proofs.
	Another elimination for $Req $
	Uniqueness of equality proofs.
	Conor's result
	$leq $ in logic
	$Rleq $ in Type Theory
	Pattern matching for $Rleq $
	{	t Leq} in LEGO
	Elimination for {	t Leq}
	Inductive definitions
	Loose ends

