The University of Nottingham
SCHOOL OF COMPUTER SCIENCE
A LEVEL 1 MODULE, AUTUMN SEMESTER 2011-2012
MATHEMATICS FOR COMPUTER SCIENTISTS
Time allowed 1 hour and 30 minutes

Candidates must NOT start writing their answers until told to do so

Answer Question 1 and
TWO questions of the remaining 4 (Questions 2-5)

Marks available for sections of questions are shown in
brackets in the right-hand margin.

No calculators are permitted in this examination.

Dictionaries are not allowed with one exception. Those whose first language
is not English may use a standard translation dictionary to translate
between that language and English provided that neither language is the
subject of this examination. Subject specific translation dictionaries are not
permitted.

No electronic devices capable of storing and retrieving
text, including electronic dictionaries, may be used.

Appendices A and B on pages 8 and 9
give the rules of propositional logic and Boolean algebra

DO NOT turn examination paper over until instructed to do so
Question 1:

For the following questions, each correct answer gives 1 mark. Every incorrect or blank answer receives a negative mark of -1.

(a) Consider the following three propositional variables, defined as statements in English:

\(A = \text{Dinosaurs are extinct.} \)
\(B = \text{Colourless green ideas sleep furiously.} \)
\(C = \text{This sentence is prickly.} \)

Translate the following two English sentences into propositional formulas:

(i) If colourless green ideas sleep furiously, then this sentence isn’t prickly.

(ii) If dinosaurs aren’t extinct and this sentence is prickly, then colourless green ideas don’t sleep furiously.

(iii) Is the implication connective, \(\Rightarrow \), associative?

(iv) Write the truth table of the propositional formula \(A \land \neg(B \lor A) \).

(v) Is the propositional formula \(A \lor B \Rightarrow (A \Rightarrow \neg B) \) a tautology?

(b) Compute the values of the following expressions:

(i) \(\lfloor | -5.2| \rfloor \)
(ii) \(\lceil | -2.7| \rceil \)
(iii) \(\lfloor \lceil 11/5 \rceil /2 \rfloor \)

For each of the following propositions, state if it is true or false:

(iv) For every real number \(x \), \(\lfloor x \rfloor = \lfloor \lfloor x \rfloor \rfloor \).

(v) For every real number \(x \), \([x] = [y] \Rightarrow [x] = [y] \).

(c) For each of the following propositions, state if it is true or false (all variables denote natural numbers):

(i) 1 divides every natural number.
(ii) Divisibility is a symmetric order relation.

(iii) \((k \mid n) \land (k \mid m) \Rightarrow k \mid \gcd(n, m)\).

(iv) If \(p\) is prime, then \(\gcd(p, n) = p\).

(v) The “larger or equal” relation, \(\geq\), is antisymmetric.

(d) Consider the following two sets:

\[
A = \{\text{rose, tulip, dandelion, daisy}\} \\
B = \{\text{daisy, cyclamen, tulip, orchid}\}
\]

List the elements of the following sets:

(i) \(B \setminus (A \setminus B)\)

(ii) \(\mathcal{P}(A \cap B)\)

For each of the following propositions, state if it is true or false for all sets \(X, Y\) and \(Z\):

(iii) \(X \setminus (Y \setminus X) = X\)

(iv) \((X \subseteq Y) \Rightarrow (X \cup Y = X)\)

(v) \(X \setminus (Y \cap Z) = (X \setminus Y) \cup (X \setminus Z)\)

(e) Compute the following:

(i) \(\sum_{i=1}^{0} (i^i)\)

(ii) \(\sum_{i=0}^{3} \binom{3}{i}\)

(iii) The number of subsets of \(\mathbb{Z}_5\) of cardinality 3.

(iv) The number of subsets of \(\mathcal{P}(\mathbb{Z}_5)\) of cardinality 3.

(v) The multiplicative inverse of 2 in \(\mathbb{Z}_7\).
Question 2:

This question is about propositional logic and Boolean algebra. (25)

(a) Write down the truth table for the following formula and state whether it is a tautology or not: (5)

\[(A \Rightarrow B) \Rightarrow C \Rightarrow A \lor B \lor \neg C.\]

(b) Complete the following derivation, which establishes that the two assumptions 1 and 2 are contradictory: (10)

\begin{array}{l}
1 \quad \neg A \land B \\
2 \quad A \lor \neg B \\
\vdots \\
\vdots \\
\cdots \quad \bot \quad \cdots
\end{array}

(c) Using Boolean algebra, prove the following propositional equality, justifying every step by one of the rules: (10)

\[(C \Rightarrow B) \Rightarrow A = (\neg C \Rightarrow A) \land (B \Rightarrow A).\]
Question 3:

This question is about recursion and induction. (25)
Consider the recursive function defined as follows:

\[
\text{strangeFun}(0) = 0 \\
\text{strangeFun}(n) = 2 \cdot n^2 \, – \, \text{strangeFun}(n-1) \quad \text{if } n > 0
\]

(a) Compute the following values of \(\text{strangeFun}\): (5)

\[
\text{strangeFun}(1) \\
\text{strangeFun}(2) \\
\text{strangeFun}(3) \\
\text{strangeFun}(4)
\]

(b) Prove by induction that the following property holds for every natural number \(n\): (10)

\[
P(n) : \quad \text{strangeFun}(n) = n \cdot (n + 1).
\]

(c) Complete the following recursive definition (replace the question marks with two integers): (10)

\[
\text{mysteryFun}(0) = 1 \\
\text{mysteryFun}(1) = 2 \\
\text{mysteryFun}(n) = ? \cdot \text{mysteryFun}(n-1) + ? \cdot \text{mysteryFun}(n-2) \quad \text{if } n > 1
\]

knowing the following values of the function:

\[
\text{mysteryFun}(2) = 7 \\
\text{mysteryFun}(3) = 29 \\
\text{mysteryFun}(4) = 124 \\
\text{mysteryFun}(5) = 533
\]
Question 4:
This question is about sets and functions.

(a) Let \(A, B \) and \(C \) be three sets. Write a set expression, using the union, intersection and difference operators, that describes the shaded area in the following Venn diagram:

(b) Now take the three sets \(A, B \) and \(C \) to be defined as follows:

\[
\begin{align*}
A &= \{ n \in \mathbb{N} \mid n \text{ is prime} \} \\
B &= \{ n \in \mathbb{N} \mid 7 \leq n \land n < 23 \} \\
C &= \{ n \in \mathbb{N} \mid 11 \text{ divides } n \}
\end{align*}
\]

Which of the following numbers belong to the set that you wrote down in part (a)?

5, 7, 11, 12, 13, 15, 19, 22, 23, 33.

(c) Consider the function:

\[
f : \mathbb{Z}_4 \to \mathbb{Z}_4 \\
f(x) = x^3 + x^2 + x + 1
\]

(i) Is the function a bijection?

(ii) If the answer to (i) is ‘yes’, write down the inverse of \(f \) by giving its values on every element of \(\mathbb{Z}_4 \).

If the answer to (i) is ‘no’, give a counterexample (either an element of \(\mathbb{Z}_4 \) that is not in the image of \(f \), or two elements that have the same image through \(f \)).
Question 5:
This question is about combinatorics and modular arithmetic. Consider the following function:

\[g : \mathbb{Z}_5 \rightarrow \mathbb{Z}_5 \]
\[g(0) = 3 \]
\[g(1) = 2 \]
\[g(2) = 1 \]
\[g(3) = 3 \]
\[g(4) = 1 \]

(a) Write down a function \(f \) such that, for every \(x \in \mathbb{Z}_5 \),
\[f(x) \oplus g(x) = x^2 \, (\text{in } \mathbb{Z}_5). \]
(Give the function \(f \) by specifying its values, in the same way as function \(g \) is defined.)

(b) Is \(f \) bijective? If it is, write its inverse; if it isn’t, give two arguments on which it has the same value.

(c) What is the smallest number \(n \) such that \(f^n = \text{id} \)? Give a justification of your answer.
Appendix A: Rules of propositional logic.

<table>
<thead>
<tr>
<th></th>
<th>(A \land B)</th>
<th></th>
<th>(A \lor B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(A)</td>
<td>(m)</td>
<td>(A \land B)</td>
</tr>
<tr>
<td>(n)</td>
<td>(B)</td>
<td></td>
<td>(A \lor B)</td>
</tr>
<tr>
<td>(p)</td>
<td>(A \land B)</td>
<td></td>
<td>(B)</td>
</tr>
<tr>
<td></td>
<td>(\land I, m, n)</td>
<td>(\lor I, m)</td>
<td>(\lor I, m)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th></th>
<th>(A \Rightarrow B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(A)</td>
<td>(m)</td>
<td>(A \Rightarrow B)</td>
</tr>
<tr>
<td>(n)</td>
<td>(B)</td>
<td></td>
<td>(A)</td>
</tr>
<tr>
<td>(n+1)</td>
<td>(A \Rightarrow B)</td>
<td>(n)</td>
<td>(A)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th></th>
<th>(A \neg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(A)</td>
<td>(m)</td>
<td>(A \neg)</td>
</tr>
<tr>
<td>(n)</td>
<td>(\perp)</td>
<td>(n)</td>
<td>(A)</td>
</tr>
<tr>
<td>(n+1)</td>
<td>(\neg A)</td>
<td>(n)</td>
<td>(A)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(\perp)</th>
<th></th>
<th>(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(\perp)</td>
<td>(m)</td>
<td>(A)</td>
</tr>
<tr>
<td></td>
<td>(\perp E, m)</td>
<td>(p)</td>
<td>(A)</td>
</tr>
</tbody>
</table>
Appendix B: Boolean algebra.

\[A \land B = B \land A \quad \text{Commutativity of conjunction} \]
\[A \lor B = B \lor A \quad \text{Commutativity of disjunction} \]
\[A \land (B \land C) = (A \land B) \land C \quad \text{Associativity of conjunction} \]
\[A \lor (B \lor C) = (A \lor B) \lor C \quad \text{Associativity of disjunction} \]
\[A \land (B \lor C) = (A \land B) \lor (A \land C) \quad \text{Distributivity of conj. over disj.} \]
\[A \lor (B \land C) = (A \lor B) \land (A \lor C) \quad \text{Distributivity of disj. over conj.} \]
\[\neg(A \land B) = \neg A \lor \neg B \quad \text{First De Morgan law} \]
\[\neg(A \lor B) = \neg A \land \neg B \quad \text{Second De Morgan law} \]
\[A \land \text{true} = A \quad \text{Unit of conjunction} \]
\[A \lor \text{false} = A \quad \text{Unit of disjunction} \]
\[A \land \text{false} = \text{false} \quad \text{Zero of conjunction} \]
\[A \lor \text{true} = \text{true} \quad \text{Zero of disjunction} \]
\[A \land A = A \quad \text{Idempotence of conjunction} \]
\[A \lor A = A \quad \text{Idempotence of disjunction} \]
\[A \land (A \lor B) = A \quad \text{First absorption law} \]
\[A \lor (A \land B) = A \quad \text{Second absorption law} \]
\[A \land \neg A = \text{false} \quad \text{Contradiction} \]
\[\neg \neg A = A \quad \text{Double negation} \]
\[A \lor \neg A = \text{true} \quad \text{Excluded middle} \]
\[A \Rightarrow B = \neg A \lor B \quad \text{Definition of implication} \]