
G52AFP, year 2015-2016

Coursework 1: Noughts and Crosses

Abstract

The aim of this coursework is to write a Haskell program to play
noughts and crosses, which uses game trees and the minimax algorithm
to ensure that it never looses, i.e. always achieves a win or a draw.

Instructions

• This coursework counts for 10% of the assessment for the module, and
may either be solved on your own, or jointly with ONE other student
taking the module. Larger teams are not permitted.

• Solutions must be in the form of a literate Haskell script (.lhs document),
and include a brief explanation for each definition. Bonus marks are
available for particularly clear, simple, or elegant solutions.

• For identification purposes, your script must begin as follows:

G52AFP Coursework 1 - Noughts and Crosses

Your full name(s)

Your full email address(es)

In the case of jointly produced solutions, only one copy should be sub-
mitted, containing the names of both students.

• The deadline for submission is 3pm on Tuesday 8 March. Submission
is electronic, via Moodle:

http://moodle.nottingham.ac.uk/mod/assign/view.php?id=1876162

1

The board

The 3× 3 board is represented as a list of list of player values:

type Board = [[Player]]

In turn, a player value is either a nought, a blank, or a cross, with a blank
representing a space on the board that is not yet occupied:

data Player = Nought | Blank | Cross
deriving (Ord ,Eq ,Show)

For example, here is a typical board:

[[Blank ,Nought ,Blank], [Cross,Nought ,Cross], [Cross,Blank ,Blank]]

The user interface

The following code displays a board on the screen:

showBoard :: Board → IO ()
showBoard = putStrLn ◦ unlines ◦ concat ◦ interleave bar ◦map showRow

where
bar = [replicate 18 ’-’]

showRow :: [Player]→ [String]
showRow = beside ◦ interleave bar ◦map showPlayer

where
beside = foldr1 (zipWith (++))
bar = replicate 5 "|"

showPlayer :: Player → [String]
showPlayer Nought = [" ", " +-+ ", " | | ", " +-+ ", " "]
showPlayer Blank = [" ", " ", " ", " ", " "]
showPlayer Cross = [" ", " \\ / ", " X ", " / \\ ", " "]

interleave :: a → [a]→ [a]
interleave x [] = []
interleave x [y] = [y]
interleave x (y : ys) = y : x : interleave x ys

For the purposes of this coursework, how showBoard works is not important;
just use this function in your own program. For example, applying showBoard
to the board from the previous section gives the following output:

2

| |

| +-+ |

| | | |

| +-+ |

| |

| |

\ / | +-+ | \ /

X | | | | X

/ \ | +-+ | / \

| |

| |

\ / | |

X | |

/ \ | |

| |

Exercise

Write a Haskell program
main :: IO ()

that allows a human player to play noughts and crosses against the computer,
using game trees and the minimax algorithm (which will be explained in the
lectures) to ensure that the computer never looses.

Hint: construct your program from the bottom-up, starting by defining
a number of utility functions on boards, and only then proceeding to think
about game trees, minimax, and the user-interface.

3

