This Lecture

- What is Parsing?
- Recursive-Descent Parsing Fundamentals
- Handling Choice
What is Parsing? (1)
What is Parsing? (1)

- According to Merriam-Webster OnLine (www.webster.com), *parse* means:
 to resolve (as a sentence) into component parts of speech and describe them grammatically
What is Parsing? (1)

- According to Merriam-Webster OnLine (www.webster.com), *parse* means:

 to resolve (as a sentence) into component parts of speech and describe them grammatically

- In CS, we take this to mean answering

 \[w \in L(G) ? \]

 for a CFG \(G \) by analysing the structure of \(w \) according to \(G \); i.e. to *recognize* the language generated by a grammar \(G \).
What is Parsing? (2)

- A *parser* is a program that carries out parsing; i.e., essentially (for CFGs) a realization of a PDA.
What is Parsing? (2)

- A **parser** is a program that carries out parsing; i.e., essentially (for CFGs) a realization of a PDA.

- For most practical applications, a parser will also return a structured representation of a word \(w \in L(G) \): its **derivation** or **parse tree** (although usually a simplified version, an **Abstract Syntax Tree**).
There are two basic strategies for parsing: *top-down* and *bottom up*.
There are two basic strategies for parsing: top-down and bottom up.

- A top-down parser attempts to carry out a derivation matching the input starting from the start symbol; i.e., it constructs the parse tree for the input from the root downwards in preorder.
There are two basic strategies for parsing: *top-down* and *bottom up*.

- A top-down parser attempts to carry out a derivation matching the input starting from the start symbol; i.e., it constructs the parse tree for the input *from the root downwards* in preorder.

- A bottom-up parser tries to construct the parse tree *from the leaves upwards* by using the productions “backwards”.

Parsing Strategies

GS2MAL 2012/13: Lecture 13 – p.5/24
Recursive-descent parsing is a way to implement top-down parsing.

We are just going to focus on the language recognition problem:

$$w \in L(G)$$
Recursive-descent parsing is a way to implement top-down parsing.

We are just going to focus on the language recognition problem:

\[w \in L(G) ? \]

This suggests the following type for the parser:

\[\text{parser :: [Token] \rightarrow Bool} \]

Token is “compiler speak” for (input) symbol.
Recursive-Descent Parsing (2)

Consider a typical production in some grammar G:

$$ S \to AB $$

Let $L(X)$ be the language $\{w \in T^* \mid X \to^* w\}$.

Note that

$$ w \in L(S) \iff \exists w_1, w_2. \ w = w_1w_2 \wedge w_1 \in L(A) \wedge w_2 \in L(B) $$
Consider a typical production in some grammar G:

$$S \rightarrow AB$$

Let $L(X)$ be the language $\{w \in T^* \mid X \Rightarrow^*_G w\}$. Note that

$$w \in L(S) \iff \exists w_1, w_2 . \ w = w_1 w_2$$

$$\land w_1 \in L(A)$$

$$\land w_2 \in L(B)$$

I.e., given a parser for $L(A)$ and a parser for $L(B)$, we can construct a parser for $L(S)$.
But we need a way to divide the input word w!
But we need a way to divide the input word w!

Idea!

Each parser

- tries to derive a *prefix* of the input according to the productions for the nonterminal
- returns the remaining *suffix* if successful.
Recursive-Descent Parsing (3)

But we need a way to divide the input word w!

Idea!

Each parser

- tries to derive a **prefix** of the input according to the productions for the nonterminal
- returns the remaining **suffix** if successful.

New type:

```
parseX :: [Token] -> Maybe [Token]
(Recall: data Maybe a = Nothing | Just a)
```
Now we can construct a parser for $L(S')$

$$S \rightarrow AB$$

in terms of parsers for $L(A)$ and $L(B)$:

```haskell
parseS :: [Token] -> Maybe [Token]
parseS ts =
    case parseA ts of
    Nothing -> Nothing
    Just ts' ->
        case parseB ts' of
        Nothing -> Nothing
        Just ts'' -> Just ts''
```

Recursive-Descent Parsing (4)
Recursive-Descent Parsing (5)

Or we can simplify to just

```haskell
parseS :: [Token] -> Maybe [Token]
parseS ts =
    case parseA ts of
        Nothing  -> Nothing
        Just ts' -> parseB ts'
```

This is called recursive-descent parsing because the parse functions (usually) end up being (mutually) recursive.
Exercise

Suppose `type Token = Char` and

```
parseA :: [Token] -> Maybe [Token]
parseA ('a' : ts) = Just ts
parseA _ = Nothing

parseB :: [Token] -> Maybe [Token]
parseB ('b' : ts) = Just ts
parseB _ = Nothing
```

• **Evaluate** `parseA`, `parseB`, and `parseS` on "abcd".

• **What are the productions for A and B?**
Recursive-Descent Parsers and PDAs

- Fundamental to the implementation of a recursive computation is a stack that
 - keeps track of the state of the computation
 - allows for subcomputations (to any depth).
Recursive-Descent Parsers and PDAs

- Fundamental to the implementation of a recursive computation is a **stack** that
 - keeps track of the **state** of the computation
 - allows for **subcomputations** (to any depth).

- In a language that supports recursive functions and procedures, the stack isn’t explicitly visible. But internally, it is the central datastructure.
Recursive-Descent Parsers and PDAs

- Fundamental to the implementation of a recursive computation is a \textit{stack} that
 - keeps track of the \textit{state} of the computation
 - allows for \textit{subcomputations} (to any depth).
- In a language that supports recursive functions and procedures, the stack isn’t explicitly visible. But internally, it is the central datastructure.
- Thus, a recursive-descent parser is a kind of PDA.
We also need a way to handle *choice*, as in

\[S \to AB \mid CD \]
We also need a way to handle *choice*, as in

\[S \rightarrow AB \mid CD \]

We are first going to consider the case when the choice is obvious, as in

\[S \rightarrow aAB \mid cCD \]

I.e. we assume it is manifest from the grammar that we can choose between productions with a one-symbol *lookahead*.

Recursive-Descent Parsing (6)
A Simple Recursive-Descent Parser (1)

Consider:

\[
\begin{align*}
S & \rightarrow aA \mid bBA \\
A & \rightarrow aA \mid \epsilon \\
B & \rightarrow bB \mid \epsilon
\end{align*}
\]
A Simple Recursive-Descent Parser (1)

Consider:

\[
S \rightarrow aA \mid bBA \\
A \rightarrow aA \mid \epsilon \\
B \rightarrow bB \mid \epsilon
\]

We are going to need one parsing function for each non-terminal:

- \text{parseS} :: [Token] \rightarrow \text{Maybe} [Token]
- \text{parseA} :: [Token] \rightarrow \text{Maybe} [Token]
- \text{parseB} :: [Token] \rightarrow \text{Maybe} [Token]
A Simple Recursive-Descent Parser (2)

Production: $S \rightarrow aA \mid bBA$

type Token = Char

parseS :: [Token] -> Maybe [Token]
parseS ('a' : ts) = parseA ts
parseS ('b' : ts) = case parseB ts of Nothing -> Nothing Just ts' -> parseA ts'
parseS _ = Nothing
A Simple Recursive-Descent Parser (3)

Production: \[A \rightarrow aA \mid \epsilon \]

\[
\text{parseA} :: [\text{Token}] \rightarrow \text{Maybe} [\text{Token}]
\]
\[
\text{parseA} ('a' : ts) = \text{parseA} ts
\]
\[
\text{parseA} \; ts = \text{Just} \; ts
\]

Production: \[B \rightarrow bB \mid \epsilon \]

\[
\text{parseB} :: [\text{Token}] \rightarrow \text{Maybe} [\text{Token}]
\]
\[
\text{parseB} ('b' : ts) = \text{parseB} ts
\]
\[
\text{parseB} \; ts = \text{Just} \; ts
\]

Note: Since \(A \Rightarrow \epsilon \) and \(B \Rightarrow \epsilon \), it is not a syntax error if the next token is not, respectively, \(a \) and \(b \).
Choice (1)

Now consider:

\[S \rightarrow aA \mid aBA \]
\[A \rightarrow aA \mid \epsilon \]
\[B \rightarrow bB \mid \epsilon \]
Now consider:

\[
S \rightarrow aA \mid aBA
\]

\[
A \rightarrow aA \mid \epsilon
\]

\[
B \rightarrow bB \mid \epsilon
\]

In parseS, should parseA or parseB be called once a has been read?
We could try the alternatives in order; i.e., a limited form of *backtracking*:

Production: $S' \rightarrow aA \mid aBA$

```haskell
parseS ('a' : ts) =
  case parseA ts of
    Just ts' -> Just ts'
    Nothing ->
      case parseB ts of
        Nothing -> Nothing
        Just ts' -> parseA ts'
```
Similarly, to handle ϵ-productions:

Production: $A \rightarrow aA \mid \epsilon$

$$
\text{parseA} :: [\text{Token}] \rightarrow \text{Maybe} [\text{Token}]
\text{parseA} ('a' : ts) = \text{parseA} ts
\text{parseA} ts = \text{Just} \ ts
$$
Choice (3)

Similarly, to handle ϵ-productions:

Production: $A \rightarrow aA \mid \epsilon$

```haskell
parseA :: [Token] -> Maybe [Token]
parseA ('a' : ts) = parseA ts
parseA ts = Just ts
```

If the present input starts with an a, consume it and continue. Only if this fails will the always successful ϵ-rule be used! The opposite order would not be very useful.
Choice (4)

Limited backtracking is \textit{not} an exhaustive search: liable to get stuck in “blind alleys”. Consider:

\[
egin{align*}
S & \rightarrow AB \\
A & \rightarrow aA \mid \epsilon \\
B & \rightarrow ab
\end{align*}
\]
Choice (5)

Parsing functions:

\[
\begin{align*}
\text{parseA} \ ('a' : ts) &= \text{parseA} \ ts \\
\text{parseA} \ ts &= \text{Just} \ ts \\
\text{parseB} \ ('a' : 'b' : ts) &= \text{Just} \ ts \\
\text{parseB} \ ts &= \text{Nothing} \\
\text{parseS} \ ts &= \\
&\text{case} \ \text{parseA} \ ts \ \text{of} \\
&\quad \text{Nothing} \quad \rightarrow \ \text{Nothing} \\
&\quad \text{Just} \ ts' \quad \rightarrow \ \text{parseB} \ ts'
\end{align*}
\]
Choice (6)

Will it work? Consider parsing ab. Clearly derivable from the grammar!
Will it work? Consider parsing ab. Clearly derivable from the grammar!

But:

```
parseS "ab" = Nothing
```
Choice (6)

Will it work? Consider parsing ab. Clearly derivable from the grammar!

But:

$$\text{parseS "ab" } = \text{Nothing}$$

Why? Because

$$\text{parseA "ab" } = \text{Just "b"}$$

I.e., committed to the choice $A \rightarrow a$, and will never try $A \rightarrow \epsilon$: a "blind alley".
Will it work? Consider parsing \(ab \). Clearly derivable from the grammar!

But:

\[
\text{parseS} \ "ab" = \text{Nothing}
\]

Why? Because

\[
\text{parseA} \ "ab" = \text{Just} \ "b"
\]

I.e., committed to the choice \(A \rightarrow a \), and will never try \(A \rightarrow \epsilon \): a “\textit{blind alley}”.

Changing order may solve this, but will cause other problems.
One principled approach is to try all alternatives; i.e., full backtracking (aka list of successes):
One principled approach is to try all alternatives; i.e., full backtracking (aka list of successes):

- Each parsing function returns a list of all possible suffixes. Type:

  ```haskell
  parseX :: [Token] -> [[[Token]]]
  ```
One principled approach is to try all alternatives; i.e., full backtracking (aka list of successes):

- Each parsing function returns a list of all possible suffixes. Type:

 \[\text{parseX :: [Token] -> [[Token]]} \]

- Translate \(A \rightarrow \alpha | \beta \) into

 \[\text{parseA ts = parseAlpha ts ++ parseBeta ts} \]
One principled approach is to try all alternatives; i.e., full backtracking (aka list of successes):

- Each parsing function returns a list of all possible suffixes. Type:

\[
\text{parseX} :: [\text{Token}] \rightarrow [[\text{Token}]]
\]

- Translate \(A \rightarrow \alpha | \beta \) into

\[
\text{parseA} \ ts = \text{parseAlpha} \ ts ++ \text{parseBeta} \ ts
\]

- An empty list indicates no possible parsing.
However:

- backtracking is computationally expensive
- issues with error reporting: where exactly lies the problem if it only after an exhaustive search becomes apparent that there is no possible way to parse a word?

We are going to look at another principled approach that avoids backtracking: **predictive parsing**. (But the grammar must satisfy certain conditions.)