Recursive-Descent Parsing: Elimination of Left Recursion

Henrik Nilsson

University of Nottingham, UK
This Lecture

- The problem of recursive-descent parsing and left recursive grammars.
- Elimination of left recursion.
Left Recursion

Consider: $A \rightarrow Aa \mid \epsilon$
Left Recursion

Consider: $A \rightarrow Aa \mid \epsilon$

Parsing function:

```haskell
parseA :: [Token] -> Maybe [Token]
parseA ts =
  case parseA ts of
    Just ('a' : ts') -> Just ts'
    _ -> Just ts
```
Left Recursion

Consider: $A \rightarrow Aa \mid \epsilon$

Parsing function:

```haskell
parseA :: [Token] -> Maybe [Token]
parseA ts =
    case parseA ts of
        Just ('a' : ts') -> Just ts'
        _ -> Just ts
```

Any problem?
Left Recursion

Consider: \[A \rightarrow Aa \mid \epsilon \]

Parsing function:

\[
\text{parseA} :: [\text{Token}] \rightarrow \text{Maybe} [\text{Token}]
\]
\[
\text{parseA} \ ts =
\text{case parseA ts of}
\text{Just ('a' : ts')} \rightarrow \text{Just ts'}
_ \rightarrow \text{Just ts}
\]

Any problem?

Would \textit{loop}! Recursive-descent parsers \textit{cannot} deal with \textit{left-recursive} grammars.
A grammar is *left-recursive* if there is some non-terminal A such that $A \Rightarrow A\alpha$.
A grammar is **left-recursive** if there is some non-terminal A such that $A \Rightarrow A\alpha$.

Certain parsing methods **cannot** handle left-recursive grammars.
Elimination of Left Recursion (1)

- A grammar is **left-recursive** if there is some non-terminal A such that $A \Rightarrow \alpha A$.
- Certain parsing methods **cannot** handle left-recursive grammars.
- If we want to use such a parsing method for parsing a language $L = L(G)$ given by a left-recursive grammar G, then the grammar first has to be transformed into an **equivalent** grammar G' that is **not** left-recursive.
Recap: Equivalence of Grammars

Two grammars G_1 and G_2 are **equivalent** iff $
\textit{L} (G_1) = \textit{L} (G_2)$.

Example:

\textit{G}_1: $S \rightarrow \epsilon \mid A$

$A \rightarrow a \mid aA$

$L(G_1) = \{a\}^* = \textit{L} (G_2)$

\textit{G}_2: $S \rightarrow A$

$A \rightarrow \epsilon \mid Aa$

(The equivalence of CFGs is in general **undecidable**.)
We will first consider *immediate* left recursion; i.e., productions of the form

\[A \rightarrow A\alpha \]

where \(\alpha \) cannot derive \(\epsilon \).
We will first consider *immediate* left recursion; i.e., productions of the form

\[A \rightarrow A\alpha \]

where \(\alpha \) cannot derive \(\epsilon \).

Key idea: \(A \rightarrow \beta \mid A\alpha \) and \(A \rightarrow \beta(\alpha)^* \) are equivalent.
We will first consider *immediate* left recursion; i.e., productions of the form

\[A \rightarrow A\alpha \]

where \(\alpha \) cannot derive \(\epsilon \).

Key idea: \(A \rightarrow \beta \mid A\alpha \) and \(A \rightarrow \beta(\alpha)^* \) are equivalent.

The latter can be expressed as:

\[
\begin{align*}
A & \rightarrow \beta A' \\
A' & \rightarrow \alpha A' \mid \epsilon
\end{align*}
\]
Exercise

• The following grammar G_1 is immediately left-recursive:

$$A \rightarrow b \mid Aa$$

Draw the derivation tree for baa using G_1.

• The following is a non-left-recursive grammar G'_1 equivalent to G_1:

$$A \rightarrow bA'$$
$$A' \rightarrow aA' \mid \epsilon$$

Draw the derivation tree for baa using G'_1.
Elimination of Left Recursion (3)

For each nonterminal A defined by some left-recursive production, group the productions for A

$$A \rightarrow A\alpha_1 | A\alpha_2 | \ldots | A\alpha_m | \beta_1 | \beta_2 | \ldots | \beta_n$$

such that no β_i begins with an A.
Elimination of Left Recursion (3)

For each nonterminal A defined by some left-recursive production, group the productions for A

$$A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \ldots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n$$

such that no β_i begins with an A.

Then replace the A productions by

$$A \rightarrow \beta_1A' \mid \beta_2A' \mid \ldots \mid \beta_nA'$$

$$A' \rightarrow \alpha_1A' \mid \alpha_2A' \mid \ldots \mid \alpha_mA' \mid \epsilon$$

Assumption: no α_i derives ϵ.
Consider the (immediately) left-recursive grammar:

\[
S \rightarrow A \mid B \\
A \rightarrow ABc \mid AAdd \mid a \mid aa \\
B \rightarrow Bee \mid b
\]

Terminal strings derivable from \(B \) include:

\(b, bee, beeee, beeeeeee \)

Terminal strings derivable from \(A \) include:

\(a, aa, aadd, aaadd, aaadddd, abc, aabc, abeec, aabeec, abeeecbeec, aabeeeeecddbeec \)
Elimination of Left Recursion (5)

Let us do a leftmost derivation of $aabeeeeecddeec$:

$$
S \Rightarrow A \\
\Rightarrow ABc \\
\Rightarrow AAddBc \\
\Rightarrow aAddBc \\
\Rightarrow aABcddBc \\
\Rightarrow aaBcddBc \\
\Rightarrow aaBeecddBc \\
\Rightarrow aaBeeecedBc \\
\Rightarrow aabeeeeecdBc \\
\Rightarrow aabeeeeecddeec \\
$$
Elimination of Left Recursion (6)

Here is the grammar again:

\[
\begin{align*}
S & \rightarrow A \mid B \\
A & \rightarrow ABc \mid AAdd \mid a \mid aa \\
B & \rightarrow Bee \mid b
\end{align*}
\]
Elimination of Left Recursion (6)

Here is the grammar again:

\[
S \rightarrow A \mid B \\
A \rightarrow ABc \mid AAdd \mid a \mid aa \\
B \rightarrow Bee \mid b
\]

An equivalent right-recursive grammar:

\[
S \rightarrow A \mid B \\
A \rightarrow aA' \mid aaA' \\
A' \rightarrow BcA' \mid AddA' \mid \epsilon \\
B \rightarrow bB' \\
B' \rightarrow eeB' \mid \epsilon
\]
Elimination of Left Recursion (7)

Derivation of $aabeeeeecddbeec$ in the new grammar:

$$S' \Rightarrow A \Rightarrow aA' \Rightarrow aAddA' \Rightarrow aaA'ddA'$$
$$\Rightarrow aaBcA'ddA'$$
$$\Rightarrow aabB'cA'ddA'$$
$$\Rightarrow aabbeeB'cA'ddA'$$
$$\Rightarrow aabeeeecA'ddA'$$
$$\Rightarrow aabeeeecddA'$$
$$\Rightarrow aabeeeecddBcA'$$
$$\Rightarrow aabeeeecddBbB'cA'$$
$$\Rightarrow aabeeeecddbeecB'cA'$$
$$\Rightarrow aabeeeecddbeecA' \Rightarrow aabeeeecddbeec$$
General Left Recursion (1)

To eliminate *general* left recursion:

- first transform the grammar into an *immediately* left-recursive grammar through systematic substitution
- then proceed as before.
Substitution

- An occurrence of a non-terminal in a right-hand side may be replaced by the right-hand sides of the productions for that non-terminal if done in all possible ways.

- All productions for non-terminals that, as a result, cannot be reached from the start symbol, can be eliminated.

(See e.g. Aho, Sethi, and Ullman (1986) for details.)
General Left Recursion (2)

For example, the generally left-recursive grammar

\[
\begin{align*}
A & \rightarrow Ba \\
B & \rightarrow Ab \mid Ac \mid \epsilon
\end{align*}
\]

is first transformed into the immediately left-recursive grammar

\[
\begin{align*}
A & \rightarrow Aba \\
A & \rightarrow Ac a \\
A & \rightarrow a
\end{align*}
\]
Exercise

Transform the following generally left-recursive grammar

\[
\begin{align*}
A & \rightarrow BaB \\
B & \rightarrowCb \mid \epsilon \\
C & \rightarrow Ab \mid Ac
\end{align*}
\]

into an equivalent immediately left-recursive grammar.
Solution

First:

\[
\begin{align*}
A & \rightarrow \ BaB \\
B & \rightarrow \ Abb \mid Acb \mid \epsilon
\end{align*}
\]

Then:

\[
\begin{align*}
A & \rightarrow \ AbbaB \mid AcbaB \mid aB \\
B & \rightarrow \ Abb \mid Acb \mid \epsilon
\end{align*}
\]

Or, eliminating \(B \) completely:

\[
\begin{align*}
A & \rightarrow \ AbbaAbb \mid AcbaAbb \mid aAbb \\
& \mid \ AbbaAcb \mid AcbaAcb \mid aAcb \\
& \mid \ Abba \mid Acba \mid a
\end{align*}
\]