These lectures:
- The problem of choice revisited.
- Predictive Parsing and LL(1) grammars.
- Computation of First and Follow Sets.
- Left factoring

Recap: Recursive-Descent Parsing

Recursive-descent parsing is an example of the top-down parsing method:
- One parsing function associated with each nonterminal:
 \[
 \text{parseX} :: [\text{Token}] \rightarrow \text{Maybe} [\text{Token}]
 \]
- Each function tries to derive a prefix of the current input according to the productions for the nonterminal in question.
- Function for other nonterminals are invoked recursively as needed.

Recap: Handling Choice

We also need a way to handle choice, as in
\[
S \rightarrow AB \mid CD
\]
- Looking at the next input symbol is sometimes enough:
 \[
 S \rightarrow aB \mid cD
 \]
- If not, all alternatives could be explored through backtracking:
 \[
 \text{parseX} :: [\text{Token}] \rightarrow ([\text{Token}])
 \]

Predictive Parsing (1)

Today, we are going to look into exactly when the next input symbol, a one symbol lookahead, can be used to make all parsing decisions.
We note that this can be the case even if the RHSs start with nonterminals:
\[
S \rightarrow AB \mid CD
\]
\[
A \rightarrow a \mid b
\]
\[
C \rightarrow c \mid d
\]

Predictive Parsing (2)

- Predictive parsing is an example of recursive descent parsing where no backtracking is needed.
- The grammar must be such that the next input symbol uniquely determines the next production to use.

Productions:
\[
X \rightarrow \alpha \mid \beta
\]
\[
\text{parseX} (t : ts) =
\begin{align*}
 | t \in \text{first}(\alpha) & \rightarrow \text{parse } \alpha \\
 | t \in \text{first}(\beta) & \rightarrow \text{parse } \beta \\
 | \text{otherwise} & \rightarrow \text{Nothing}
\end{align*}
\]

Predictive Parsing (3)

How to make the choices? Idea:
- Compute the set of terminal symbols that can start strings derived from each alternative, the first set.
- If there is a choice between two or more alternatives, insist that the first sets for those are disjoint.
- The right choice can now be made simply by determining to which alternative’s first set the next input symbol belongs.

Predictive Parsing (4)

Productions:
\[
X \rightarrow \alpha \mid \beta
\]
\[
\text{parseX} (t : ts) =
\begin{align*}
 | t \in \text{first}(\alpha) & \rightarrow \text{parse } \alpha \\
 | t \in \text{first}(\beta) \cup \text{follow}(X) & \rightarrow \text{parse } \beta \\
 | \text{otherwise} & \rightarrow \text{Nothing}
\end{align*}
\]

Predictive Parsing (5)

Again, consider: \(X \rightarrow \alpha \mid \beta\)
What if e.g. \(\beta \Rightarrow \epsilon\)?
Clearly, the next input symbol could be a terminal that can follow a string derivable form \(X\)!
\[
\text{parseX} (t : ts) =
\begin{align*}
 | t \in \text{first}(\alpha) & \rightarrow \text{parse } \alpha \\
 | t \in \text{first}(\beta) \cup \text{follow}(X) & \rightarrow \text{parse } \beta \\
 | \text{otherwise} & \rightarrow \text{Nothing}
\end{align*}
\]

The branches must be mutually exclusive!
Due to the complexity of the text, I will provide a plain text representation for easier reading and comprehension.

First and Follow Sets (1)

Following (roughly) “the Dragon Book” [ASU86]

For a CFG $G = (N, T, P, S)$:

- $\text{first}(\alpha) = \{ \alpha \in T \mid \alpha \Rightarrow \beta \}$
- $\text{follow}(A) = \{ \alpha \in T \mid S \Rightarrow \alpha A \beta \}$

where we assume $\alpha, \beta \in (N \cup T)^*$. $A \in N$, and $\$$ is a special “end of input” marker.

First and Follow Sets (2)

Consider:

- $S \rightarrow ABC$
- $B \rightarrow b | \epsilon$
- $A \rightarrow aA | \epsilon$
- $C \rightarrow c | d$

Thus, if:

- $\text{first}(\{ \alpha_1 \}) \cap \text{first}(\{ \alpha_n \}) = \emptyset$ for $1 \leq i < j \leq n$, and
- $\text{first}(\{ \alpha_i \}) = \emptyset$ for some i, then, for all $1 \leq j \leq n$, $j \neq i$,
 - $\alpha_j \not\Rightarrow \epsilon$, and
 - $\text{follow}(A) \cap \text{first}(\{ \alpha_j \}) = \emptyset$

then it is always clear what to do!

A grammar satisfying these conditions is said to be an LL(1) grammar.

First and Follow Sets (3)

Same grammar:

- $S \rightarrow ABC$
- $B \rightarrow b | \epsilon$
- $A \rightarrow aA | \epsilon$
- $C \rightarrow c | d$

Follow sets:

- $\text{follow}(C) = \{ \$$ \}$
- $\text{first}(B) = \{ \epsilon \}$
- $\text{follow}(A) = \{ \text{because } B \Rightarrow \epsilon \}$

Nullable Nonterminals (1)

In order to compute the first and follow sets for a grammar $G = (N, T, P, S)$, we first need to know all nonterminals $A \in N$ such that $A \Rightarrow \epsilon$; i.e. the set $N_\epsilon \subseteq N$ of nullable nonterminals.

Let $\text{sym}(\alpha)$ denote the set of symbols in a string α:

- $\text{sym} \in (N \cup T)^* \rightarrow \mathcal{P}(N \cup T)$
- $\text{sym}(\epsilon) = \emptyset$
- $\text{sym}(X\alpha) = \{ X \} \cup \text{sym}(\alpha)$

Nullable Nonterminals (2)

The set N_ϵ is the smallest solution to the equation

$$N_\epsilon = \{ A \mid A \rightarrow \alpha \in P \land \forall X \in \text{sym}(\alpha) \cdot X \in N_\epsilon \}$$

(Note that $A \in N_\epsilon$ if $A \rightarrow \epsilon \in P$.)

We can then define a predicate nullable on strings of grammar symbols:

- $\text{nullable} \in (N \cup T)^* \rightarrow \text{Bool}$
- $\text{nullable}(\epsilon) = \text{true}$
- $\text{nullable}(X\alpha) = X \in N_\epsilon \land \text{nullable}(\alpha)$

Nullable Nonterminals (3)

The equation for N_ϵ can be solved iteratively as follows:

1. Initialize N_ϵ to $\{ A \mid A \rightarrow \epsilon \in P \}$.
2. If there is a production $A \rightarrow \alpha$ such that $\forall X \in \text{sym}(\alpha) \cdot X \in N_\epsilon$, then add A to N_ϵ.
3. Repeat step 2 until no further nullable nonterminals can be found.

Nullable Nonterminals (4)

Consider the following grammar:

- $S \rightarrow ABC | AB$
- $B \rightarrow b | \epsilon$
- $A \rightarrow aA | BB$
- $C \rightarrow c | d$

- Because $B \rightarrow \epsilon$ is a production, $B \in N_\epsilon$.
- Because $A \rightarrow BB$ is a production and $B \in N_\epsilon$, additionally $A \in N_\epsilon$.
- Because $S \rightarrow AB$ is a production, and $A, B \in N_\epsilon$, additionally $S \in N_\epsilon$.
- No more production with nullable RHS. The set of nullable symbols $N_\epsilon = \{ S, A, B \}$.
Computing First Sets (1)

For a CFG $G = (N, T, P, S)$, the sets $\text{first}(A)$ for $A \in N$ are the smallest sets satisfying:

\[
\text{first}(A) \subseteq T
\]

\[
\text{first}(A) = \bigcup_{A \to \alpha \in P} \text{first}(\alpha)
\]

Computing First Sets (2)

For strings, first is defined as (note the overloaded notation):

\[
\text{first} \in (N \cup T)^* \rightarrow \mathcal{P}(T)
\]

\[
\text{first}(\epsilon) = \emptyset
\]

\[
\text{first}(a\alpha) = \{a\}
\]

\[
\text{first}(Aa) = \text{first}(A) \cup \begin{cases}
\text{first}(\alpha), & \text{if } A \in N_e \\
\emptyset, & \text{if } A \notin N_e
\end{cases}
\]

where $a \in T$, $A \in N$, and $\alpha \in (N \cup T)^*$.

Computing First Sets (3)

The solutions can often be obtained directly by expanding out all definitions.

If necessary, the equations can be solved by iteration in a similar way to how N_e is computed.

However, note that the smallest solution to set equations of the type

\[
A = A \cup B
\]

is simply

\[
A = B
\]

Computing First Sets (4)

Consider (again):

\[
S \rightarrow ABC \\
A \rightarrow aA | \epsilon \\
B \rightarrow b | \epsilon \\
C \rightarrow c | d
\]

First compute the nullable nonterminals:

$N_e = \{A, B\}$.

Then compute first sets:

\[
\text{first}(A) = \text{first}(aA) \cup \text{first}(\epsilon)
\]

\[
= \{a\} \cup \emptyset = \{a\}
\]

Computing First Sets (5)

For a CFG $G = (N, T, P, S)$, the sets $\text{first}(A)$ are the smallest sets satisfying:

- $\{\$\} \subseteq \text{first}(S)$
- If $A \rightarrow aB\beta \in P$, then $\text{first}(\beta) \subseteq \text{first}(B)$
- If $A \rightarrow aB\beta \in P$, and $\text{nullable}(\beta)$ then $\text{follow}(A) \subseteq \text{follow}(B)$

$A, B \in N$, and $\alpha, \beta \in (N \cup T)^*$.

(It is assumed that there are no useless symbols; i.e., all symbols can appear in the derivation of some sentence.)

Computing First Sets (6)

\[
S \rightarrow ABC \\
A \rightarrow aA | \epsilon \\
B \rightarrow b | \epsilon \\
C \rightarrow c | d
\]

\[
\text{first}(S) = \text{first}(ABC)
\]

\[
= \begin{cases}
[A \in N_e] & \text{first}(A) \cup \text{first}(BC) \\
[B \in N_e \land C \notin N_e] & \text{first}(A) \cup \text{first}(B) \cup \text{first}(C) \cup \emptyset \\
\{a\} \cup \{b\} \cup \{c, d\} & = \{a, b, c, d\}
\end{cases}
\]

Computing Follow Sets (1)

For a CFG $G = (N, T, P, S)$, the sets $\text{follow}(A)$ are the smallest sets satisfying:

- $\{\$\} \subseteq \text{follow}(S)$
- If $A \rightarrow aB\beta \in P$, then $\text{first}(\beta) \subseteq \text{first}(B)$
- If $A \rightarrow aB\beta \in P$, and $\text{nullable}(\beta)$ then $\text{follow}(A) \subseteq \text{follow}(B)$

$A, B \in N$, and $\alpha, \beta \in (N \cup T)^*$.

(It is assumed that there are no useless symbols; i.e., all symbols can appear in the derivation of some sentence.)

Computing Follow Sets (2)

\[
S \rightarrow ABC \\
A \rightarrow aA | \epsilon \\
B \rightarrow b | \epsilon \\
C \rightarrow c | d
\]

\[
\text{Constraints for } \text{follow}(S):
\]

\[
\{\$\} \subseteq \text{follow}(S)
\]

\[
\text{Constraints for } \text{follow}(A) \text{ (note: } \neg\text{nullable}(BC)):
\]

\[
\text{first}(BC) \subseteq \text{follow}(A)
\]

\[
\text{first}(\epsilon) \subseteq \text{follow}(A)
\]

\[
\text{follow}(A) \subseteq \text{follow}(A)
\]

Computing Follow Sets (3)

\[
S \rightarrow ABC \\
A \rightarrow aA | \epsilon \\
B \rightarrow b | \epsilon \\
C \rightarrow c | d
\]

\[
\text{Constraints for } \text{follow}(B) \text{ (note: } \neg\text{nullable}(C)):
\]

\[
\text{first}(C) \subseteq \text{follow}(B)
\]

\[
\text{Constraints for } \text{follow}(C) \text{ (note: } \text{nullable}(\epsilon)):
\]

\[
\text{first}(\epsilon) \subseteq \text{follow}(C)
\]

\[
\text{follow}(S) \subseteq \text{follow}(C)
\]
Computing Follow Sets (4)
In general:

$$A \subseteq C \land B \subseteq C \iff A \cup B \subseteq C$$

Also, constraints like $$A \subseteq A$$ are trivially satisfied and can be omitted.
The constraints can thus be written as:

$$\{\$\} \subseteq \text{follow}(S)$$
$$\text{first}(BC) \cup \text{first}(\epsilon) \subseteq \text{follow}(A)$$
$$\text{first}(C) \subseteq \text{follow}(B)$$
$$\text{first}(\epsilon) \cup \text{follow}(S) \subseteq \text{follow}(C)$$

Computing Follow Sets (5)
Using

$$\text{first}(\epsilon) = \emptyset$$
$$\text{first}(C) = \{c, d\}$$
$$\text{first}(BC) = \text{first}(B) \cup \text{first}(C) \cup \emptyset = \{b\} \cup \{c, d\} = \{b, c, d\}$$

the constraints can be simplified further:

$$\{\$\} \subseteq \text{follow}(S)$$
$$\{b, c, d\} \subseteq \text{follow}(A)$$
$$\{c, d\} \subseteq \text{follow}(B)$$
$$\text{follow}(S) \subseteq \text{follow}(C)$$

Computing Follow Sets (6)
Looking for the smallest sets satisfying these constraints, we get:

$$\text{follow}(S) = \{\$\}$$
$$\text{follow}(A) = \{b, c, d\}$$
$$\text{follow}(B) = \{c, d\}$$
$$\text{follow}(C) = \text{follow}(S) = \{\$\}$$

LL(1), Left-Recursion, Ambiguity (1)
No left-recursive or ambiguous grammar can be LL(1)! For example, consider:

$$A \rightarrow Aa \mid \beta$$

First assume $$\text{first}(\beta) \neq \emptyset$$.

Note that

- $$\text{first}(\beta) \subseteq \text{first}(A)$$
- $$\text{first}(A) \subseteq \text{first}(Aa)$$
- (If $$A \not\Rightarrow \epsilon$$)

Thus $$\text{first}(Aa) \cap \text{first}(\beta) \neq \emptyset$$. Not LL(1)!

LL(1), Left-Recursion, Ambiguity (2)
Now assume $$\text{first}(\beta) = \emptyset$$

This can only be the case if $$\beta \Rightarrow \epsilon$$ and nothing else.

Assuming $$S \Rightarrow \alpha A \gamma$$, we note

- $$a \in \text{first}(Aa)$$ because $$A \Rightarrow \beta \Rightarrow \epsilon$$, and
- $$a \in \text{follow}(A)$$ because $$A \Rightarrow \alpha A \gamma \Rightarrow \alpha Aa \gamma$$

Because $$\beta \Rightarrow \epsilon$$, the LL(1) conditions require that $$\text{first}(Aa)$$ and $$\text{follow}(A)$$ be disjoint. But that is clearly not the case!

Left Factoring (1)
Left factoring means factoring out a common prefix among a group of productions. This can help making a grammar suitable for predictive recursive descent parsing.

Example:

$$S \rightarrow aXbY \mid aXbY cZ$$

Not suitable for predictive parsing!
But note common prefix! Let's try to postpone the choice!

Left Factoring (2)
Before left factoring:

$$S \rightarrow aXbY \mid aXbY cZ$$

After left factoring:

$$S \rightarrow aXbYS'$$
$$S' \rightarrow \epsilon \mid cZ$$

Now suitable for predictive parsing!