
Chapter 1

Fundamental Concepts

This book is about the mathematical foundations of programming, with a special
attention on computing with infinite objects. How can mathematics help in
programming? There are several important roles that mathematical modelling
and reasoning plays in computer science.

First of all, mathematics helps us understand the meaning of programs. We
can use the power of abstraction to interpret data structures and computational
processes as mathematical entities. This view allows us to forget about some of
the complicated practical details of implementation and to concentrate on the
high-level concepts.

A second role of mathematics is in specification: stating clearly and precisely
what a program must do. Usually the purpose of a program is expressed in
common language with all its ambiguities and imprecisions. This opens the risk
of the final software being inadequate to the requirements. But if these were not
expressed in a clear and precise way, it may be very difficult to point out where
the code went wrong. Logical mathematical specification allows us to state with
absolute precision what a program must do. We can use the specification as a
guide in development and as a test to verify the success of the final software.

A third role for mathematics is in reasoning about programs. Using symbolic
logic we can prove properties of them. First of all, we can verify, with formal
methods, that the software satisfies the specifications developed according to
the second point. Further, we can also investigate high-level characteristics of
the software and its behaviour and even its computational complexity. This can
be done with the help of computers: proof assistants are systems that allow a
user to write both specifications and programs and verify correctness properties
interactively with the systems. If the process is successful it guarantees that the
result are certain, eliminating the possibility of any human error.

Finally, the fourth role that mathematics plays in computer science is that
of abstract interpretation. We see data structures as mathematical objects, to
clarify their nature. Data is implemented in specific ways in various computer
architecture. By abstracting from the specific details of the implementation, we
can concentrate on their essential nature, which doesn’t depend on the concrete
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CHAPTER 1. FUNDAMENTAL CONCEPTS

realization. This nature can be described as part of logical/mathematical reality.

Syntax and Semantics

Two important sides of the use of mathematical modelling in computer science
are syntax and semantics.

Syntax describes the way we write expressions, terms, formulas, programs.
It tells us how a programming language is defined precisely: what symbols we
use; what are the reserved words and the identifiers; how we combine symbols
to form correct expressions and instructions; how we combine instructions to
create programs.

Semantics consists in giving the meaning of expressions, terms, formulas,
programs. Without it a programming language would consist only of a set of
meaningless strings of symbols. Semantics specifies what the symbols stand for
and what happens when we combine them according to the rules of the syntax.
There are two fundamental ways of giving meaning to a language.

Denotational Semantics interprets expressions and programs as objects in
some mathematical space. The meaning of a string of symbols is some abstract
entity. The advantage of this approach is that we can use powerful mathematical
methods to derive properties of the programs.

Operational Semantics interprets expressions and programs as computations.
The meaning of a program consists in what happens when we run it. Operational
semantics doesn’t move away from syntax to a mathematical reality. Instead
it adds a dynamic element to the syntax, stating how syntactic entities are
computed.

Arithmetic Expressions

To illustrate the basic functions of syntax and semantics, we use a very simple
language of arithmetic expressions. It is extremely limited and not much inter-
esting can be done with it. But it is sufficient to clarify the main notions. Later
we’ll more to much richer languages.

This language contains natural numbers, 0, 1, 2, et cetera, and the Boolean
expressions true and false. we can combine them with simple operations: succes-
sor and predecessor for numbers, a test of whether an number is 0, a conditional
(if-then-else) constructor.

We give the syntax in two different but equivalent ways: first in Backus-
Naur Form (BNF), then by derivation rules. The BNF is simple and compact,
while derivation rules are a bit lengthier and involved. However, there are
richer languages that cannot be specified by a BNF, so derivation rules will be
necessary. They are more flexible and powerful than BNF. For this reasons, we
start introducing them immediately in this simple example to make their use
clear in view of future more complex languages.
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Backus-Naur Form for Arithmetic Expressions:

Expr ::= true | false | zero | succExpr | predExpr
| isZeroExpr | if Expr thenExpr elseExpr

The meaning of this definition is that Expr represents the set of all arithmetic
expressions. The left-hand side of the definition gives all the correct ways of
defining an expression. There are three constants, true, false and zero, and
some recursive constructors that allow us to make new expressions by inserting
previously build expressions in the places where Expr occurs.

Here are some examples of correct expressions:

zero

true

succ zero

succ true (correct expressions, though meaning unclear)
isZero (succ zero)
if (isZero (pred false)) then zero else (succ (isZero true))

Not all expressions seem to make sense. Some clearly denote a natural number,
some other denote a Boolean value, but if we mix them in the wrong order (for
example (pred true)) we have a meaningless expression. We’ll see at the moment
of giving the semantics what we can do with them.

Let us now describe the same language using derivation rules rather than
the BNF. A derivation rule is a horizontal line with some expressions written
above it and an expression written under it. For example:

e1 ∈ Expr e2 ∈ Expr e3 ∈ Expr
if e1 then e2 else e3 ∈ Expr

The rule has three assumptions and a conclusion. It states that if we have
already constructed expressions e1, e2 and e3, then we can construct the new
expression (if e1 then e2 else e3).

There are rules for the base elements as well. They don’t need any assump-
tion, so the space above the line is empty:

zero ∈ Expr true ∈ Expr false ∈ Expr

The rules for the unitary operators have just one assumption:

e ∈ Expr
succ e ∈ Expr

e ∈ Expr
pred e ∈ Expr

e ∈ Expr
isZero e ∈ Expr

To construct any element of Expr we must derive it completely, starting with
his subterms. We must build a derivation tree in which all assumptions are
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resolved by using further derivation rules. Here is an example:

zero ∈ Expr
succ zero ∈ Expr

isZero (succ zero) ∈ Expr
false ∈ Expr

succ false ∈ Expr
zero ∈ Expr

pred zero ∈ Expr
if (isZero (succ zero)) then (succ false) else (pred zero) ∈ Expr

The derivation has the form of a tree with subterms as nodes and base cases
(rules with no assumptions) as leaves. To avoid confusion we use parentheses
around subexpressions.

Defining a language using derivation rules is long and boring. BNF is much
simpler and more compact. However, derivation rules are useful in more complex
languages and for other purposes than just defining syntax. When we go beyond
a toy language like Expr or a simple imperative programming language, BNF is
not flexible enough. We will soon see examples: several system of (dependently)
typed λ-calculus can only be defined using derivation rules.

Here are the main areas in which use of derivation rules is essential.

Syntax: Definition of a language. BNF only supports languages with a finite
number of syntactic categories. We had only one category in our example,
the set Expr . We could change it a bit by having a category for numerical
expressions and a category for Boolean expressions. This would also solve
the problem of meaningless terms. However, when we introduce types,
each of them needs to be a separate category. We cannot give a BNF for
all of them. We will see instead how derivation rules make it quite easy
to define a typed language.

Manipulation of Expressions: We may want to specify how expressions can
be modified in various ways. One example is the definition of substitu-
tion. In general defining functions on terms, when they are not obviously
recursive, may require giving them as relations generated by derivation
rules.

Operational Semantics: Defining the computation rules of a language re-
quires specifying some reduction relation. This is in general defined by
derivation rules. Mostly the simple one-step derivation can be given di-
rectly, without need of assumption. But there are also structural rules that
allow us to do a reduction in context: these usually require assumptions.

Logical Systems: Derivation rules were originally introduced in mathematical
logic as a way of expressing symbolic reasoning. They are important in
defining the specific logical systems that we use to reason about programs.

The general form of a derivation rule is

A1 A2 · · · An

B
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where A1, A2, An are the assumptions and B is the conclusion. Assumptions
and conclusions are judgments, some sentences stating a fact. In our example a
judgment is something in the form e ∈ Expr states that e is a correct arithmetic
expression.

The rule says that if we have already derived A1, A2, An, then we can derive
B. All there judgments can contain meta-variables, identifiers that can be re-
placed by concrete expressions. In our examples, e, e1, e2, e3 are meta-variables.
In concrete derivations, the meta-variables are instantiated by expressions.

A correct judgment is a statement that has been derived by giving a full
derivation tree whose leaves are instances of rules without assumptions.

Semantics

We have defined the syntax of arithmetic expressions. That is, we specified
what strings of symbols are correct terms of the language Expr . Now we want
to define the semantics. That is, we describe precisely what the expression mean.
There are two basic kind of semantics. According to denotational semantics, the
meaning of an expression is an object in some mathematical space. According to
operational semantics, the meaning of an expression is the value that it computes
when we execute it.

Denotational Semantics

Arithmetic expressions describe both integer numbers from zero and Boolean
values. Therefore we choose two mathematical domains to interpret them, the
set N = {0, 1, 3, . . .} of natural numbers and the set B = {True,False} of truth
values.

We interpret every term of Expr as an element of either of these sets. For
example the term (succ (succ (succ zero))) denotes the number 3 and the term
(isZero (succ zero)) denotes the truth value False. However, some terms have
a meaningless combination of the operations for both domains, for example
(succ true). We leave the denotation of these meaningless terms undefined.

Formally, we use semantic brackets [[−]] around an expression to indicate its
denotation, for example [[succ (succ (succ zero))]] = 3 and [[isZero (succ zero)]] =
False. For meaningless terms we use the bottom symbol ⊥, so [[succ true]] = ⊥
simply means that succ true is meaningless. The symbol ⊥ itself is not any math-
ematical object. (However, in a more advanced kind of denotational semantics,
called domain theory, we define mathematical spaces in which ⊥ is an actual
element.)

The interpretation is defined by structural recursion on the syntax: we define
the meaning of an expression in terms of the meaning of its components. For
every rule that generates terms, we assume that we already know the interpre-
tation of the assumptions and we specify how to combine them to obtain the
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interpretation of the conclusion.

[[zero]] = 0
[[false]] = False

[[true]] = True

[[succ e]] = [[e]] + 1 if [[e]] ∈ N

[[pred e]] =

{

0 if [[e]] = 0
n− 1 if [[e]] = n > 0

[[isZero e]] =

{

True if [[e]] = 0
False if [[e]] = n > 0

[[if e1 then e2 else e3]] =

{

[[e2]] if [[e1]] = True

[[e3]] if [[e1]] = False

The expressions that don’t fall into these cases are left undefined, that is [[e]] = ⊥.
Also, the same side condition that we imposed for succ, that [[e]] ∈ N, must hold
for pred and isZero; if not, the expression is meaningless. Similarly, in the last
case, [[e]] must be in B. We also impose that [[e2]] and [[e3]] are in the same set,
either both in N or both in B.

Here is the calculation of the denotation of a complex expression:

[[if (if (isZero (pred zero)) then false else true) then (succ (pred zero)) else zero]] =?

Since it is a bit involved, we start calculating the denotation of its component
parts first.

[[pred zero]] = 0 because [[zero]] = 0,
therefore [[isZero (pred zero)]] = True;

[[if (isZero (pred zero)) then false else true]]
= [[false]] because [[isZero (pred zero)]] = True

= False;

[[if (if (isZero (pred zero)) then false else true) then (succ (pred zero)) else zero]]
= [[zero]] because [[if (isZero (pred zero)) then false else true]] = False

= 0.

Operational Semantics

A different way to explain the meaning of expressions consists in specifying
their computations. A complex term can be simplified by applying some reduc-
tion rules. Repeatedly reducing a term may eventually result in a value. This
reduction of expressions to values is the operational semantics of a language.

We denote the reduction relation by a squiggly arrow  . When we write
e1  e2, we mean that we can do one step of simplification in e1 and obtain
e2. For example pred (succ zero) zero or isZero (succ zero) true. Sometimes
several steps of reduction are possible. We use ∗ to denote several steps of .

There are two kinds of rules for  : the actual simplification rules, that
specify how terms of a certain form reduce, and the structural rules, that say
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that reduction can be done in context, that is, we can reduce a subterm inside
a bigger term.

The simplification rules for Expr are:

if true then e2 else e3  e2
if false then e2 else e3  e3
pred (succ e) e

pred zero zero

isZero zero true

isZero (succ e) false.

The structural rules are formulated as derivation rules. (The simplification
rules can also be given as derivation rules with no assumptions.) For each of the
expression constructors, we state that if one of its argument contains a reducible
term, then we can perform the reduction inside the constructor. There are many
structural rules, one for each argument of each constructor. The general shape
is the same for all of them. Here are just a few of them to give the idea of the
general pattern:

e e′

succ e succ e′

This rule states that if a term e reduces to e′, then we can perform this reduction
step in the argument of the ≻ constructor. For example succ (isZero zero)  
succ true. Never mind that this term is itself meaningless. Reductions are purely
syntactic operations, they don’t worry whether the expressions are sensible.

Since the if − then− else− constructor has three argument, we have three
structural rules for reduction:

e1  e′
1

if e1 then e2 else e3  if e′
1
then e2 else e3

e2  e′
2

if e1 then e2 else e3  if e1 then e
′

2
else e3

e3  e′
3

if e1 then e2 else e3  if e1 then e2 else e
′

3

The subterm of an expressions to which the reduction rule is applied are called
the redex, the result of reducing it is called the reductum. For example, in the
reduction

if (isZero zero) then (succ zero) else (pred zero)
 if true then (succ zero) else (pred zero)

the redex is (isZero zero) and the reductum is true.
There may be several redexes in an expression. We have the choice of which

one to reduce. For example, the previous expressions can be reduced with this
alternative step (redex underlined):

if (isZero zero) then (succ zero) else (pred zero)
 if (isZero zero) then (succ zero) else zero.
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Now we defined the one step reduction relation by rules. The many-step
reduction relation  ∗ consists in applying several one step reduction consecu-
tively, in any of the allowed order. For example, we can reduce the example
term that we used earlier to illustrate denotational semantics (at each step, the
active redex is underlined):

if (if (isZero (pred zero)) then false else true) then (succ (pred zero)) else zero
 if (if (isZero zero) then false else true) then (succ (pred zero)) else zero
 if (if (isZero zero) then false else true) then (succ zero) else zero
 if (if true then false else true) then else (succ zero)zero
 if false then (succ zero) else zero

 zero

After performing reduction steps as far as possible, we obtain a term that
doesn’t contain any redexes any more.

Definition 1 A term is in normal form if it contains no redexes.

A value is a term belonging to one of the following languages, respectively of
numerals and of Boolean values:

nv ::= zero | succnv
bv ::= true | false

For a natural number n, we use the notation n for the corresponding numeral:
0 = zero, 1 = succ zero, 2 = succ (succ zero) and so on.

All values are normal forms, but there are also normal forms that are not
values, for example isZero (pred true). This happens because these terms are
meaningless. When we define languages with variables, we will also have normal
forms containing free variables, which are not values because of the indetermi-
nacy of the values of the variables.

We have seen that a term can be reduced in several ways. If it contains
more than one redex, we can choose which one to reduce first. The final result
of the computation, that is, the normal form that we obtain at the end, does
not depend on the order of reduction.

Theorem 2 (Confluence) Given an expression e ∈ Expr; if there exist two
expressions e1, e2 ∈ Expr such that e  e1 and e  e2, then there exist a
common reduct e′ ∈ Expr such that e1  

∗ e′ and e2  
∗ e′.

Proof. In the case that the redexes that were reduced in e1 and e2 are inde-
pendent, that is, they occur in separated places inside e, then it is enough to
perform the other reduction in each of the two:
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e = · · · r1 · · · r2 · · ·

e1 = · · · r′
1
· · · r2 · · · e2 = · · · r1 · · · r

′

2
· · ·

e′ = · · · r′
1
· · · r′

2
· · ·

r1  r′
1

r2  r′
2

r1  r′
1

r1  r′
1

But it can also happen that the redexes are contained inside each other. For
example in the term

if true then (pred zero) else zero

we have two redexes inside each other. In this particular example it is still true
that after reducing one, the other will still be present, so we can adopt the same
strategy as for when they are separated.

However, it is also possible that the reduction of one redex makes the other
disappear. This is what happens in the following redex:

e = if true then zero else (pred (succ zero)).

When we reduce each redex separately, we get:

e1 = zero, e2 = if true then zero else zero.

We can still perform the reduction of the first redex in e2, obtaining zero, but
the second redex has disappeared from e1, so there is nothing to do. Clearly,
we still have a common reduct zero, and this will be the true in similar cases of
overlapping redexes.

This is the reason we formulated the theorem using many-step reduction:
e1  

∗ e′ and e2  
∗ e′. Specifically, one of the two many-step reductions could

be empty. �

While the proof of the confluence theorem is straightforward in this case, it
becomes more complicated for richer languages. In particular, if the language
has reduction rules that can duplicate some terms, then one reduction step may
generate many copies of an existing redex. We will need more sophisticated
proof techniques to show that confluence still holds.

If we keep reducing some redexes in a term, we will eventually get rid of
them all and arrive at a normal form.

Theorem 3 (Normal Form) For every expression e ∈ Expr there exist a
(unique) normal form e ∈ Expr such that e ∗ t.
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Proof. Notice that every reduction rule makes the term smaller. Therefore
it is necessary that eventually the reduction process will terminate. This is a
proof by induction on the length of the term. �

In more complex systems, reduction steps do not necessarily decrease the size
of the term. In some cases they can increase it in an explosive way. Therefore
a simple proof by induction on the length of the term will not work any more
and we will have to invent more sophisticated proof techniques.

Soundness and Completeness

We have defined two radically different ways to give meaning to expressions:
denotational semantics interpret them as elements of a mathematical space,
operational semantics interpret them as computation processes that lead to a
normal form.

We want to show that these two interpretation of our language agree with
each other in some sense. We have seen an example with the term

if (if (isZero (pred zero)) then false else true) then (succ (pred zero)) else zero

We calculated its denotation to be the number 0. We computed its normal form
to be the numeral zero. This is good news: the two interpretations agree.

We want to show that this always happens. First of all, the reduction process
doesn’t change the denotation of a term.

Theorem 4 (Soundness) For every expression e ∈ Expr, if e  e′ for some
other e′ ∈ Expr, then [[e]] = [[e′]]. (For meaningless terms this means that they
are both ⊥.)

Proof. TO DO [ By induction on the structure of the term. ] �

If we reduce an expression all the way to normal form, the denotation will
be preserved, so if the normal form is a value, the denotation must be the
corresponding object in the mathematical space.

Corollary 5 If e ∗ v for some value v, then [[e]] = [[v]].

The vice versa is also true: the denotation of an expression (when it exists)
will correspond exactly to a value to which the expression reduces.

Theorem 6 (Completeness) For every expression e ∈ Expr, we have:

• If [[e]] = n for some n ∈ N, then e ∗ n;

• If [[e]] = True, then e ∗ true;

• If [[e]] = False, then e ∗ false;

• If [[e]] = ⊥ then there is no value v such that e ∗ v.
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Proof. TO DO [ By induction on the structure of e and by definition of [[−]]
and  . ] �

The combination of the soundness and completeness theorems tell us that
there is complete agreement between the definitional and operational seman-
tics. This also suggests a clever method to compute the normal form of a term
(when it exists): First find the result of [[e]] and then take the syntactic value
corresponding to it. We may succinctly write: e  ∗ [[e]] (with the additional
definitions True = true and False = false). This process is called Normalization
by Evaluation.

Reduction Strategies

We have noticed that certain terms can contain many redexes and therefore
the order of reduction steps is not unique. Although the confluence property
ensures that any reduction sequence will produce the same normal form, there
are issues of efficiency that make certain reduction strategies more convenient
than others. Also, for other languages in which there is no guarantee that a
normal form exists, the choice of reduction strategy may make the difference
between a terminating computation and an infinite one.

Let’s take as example the following term:

e = if (isZero zero) then (pred (succ zero)) else (succ (pred zero)).

It contains three redexes, which we can choose to reduce in any possible order.
Two of the most important reduction strategies are called Eager Evaluation

and Lazy Evaluation. They differ in the order in which they reduce the argu-
ments of a function. In e there are three arguments, the if test condition, the
then branch and the else branch.

In eager evaluation we reduce all arguments of a function to normal form
before reducing the main expression:

e ∗ if true then zero else succ zero zero.

In lazy evaluation, we only reduce the arguments that are needed to make a
computation step in the main expression:

e if true then (pred (succ zero)) else (succ (pred zero)) pred (succ zero) zero.

Notice that we saved one reduction step: we didn’t have to reduce the else
branch of the expression.
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