
V Capretta 18 G54FOP, 2017

Chapter 2

λ-Calculus

In traditional imperative programming (like C, Java, Python), we have a clear
distinction between programs, that are sequences of instructions that are exe-
cuted sequentially, and data, that are values given in input, stored in memory,
manipulated during computation and returned as output. Programs and data
are distinct and are kept separated. Programs are not modified during compu-
tation. (It is in theory possible to do it, since programs are stored in memory
like any other data. However, it is difficult and dangerous.)

Functional Programming is a different paradigm of computation in which
there is no distinction between programs and data. Both are represented by
terms/expressions belonging to the same language. Computation consists in
the reduction of terms to normal form. That includes terms that represent
functions, that is, the programs themselves.

The pure realization of this idea is the λ-calculus. It is a pure theory of
functions with only one kind of objects: λ-terms. They represent both data
structures and programs.

The main idea is the definition of functions by abstraction. For example,
we may define a function f on numbers by saying that f(x) = x2 + 3. By
this we mean that any argument to the function, represented by the variable
x, is squared and added to 3. The use of variables is different from imperative
programming: x is just a place-holder to denote any possible value, while in
imperative programming variables represent memory locations containing values
that can be modified.

We can specify the function f alternatively with the mapping notation:

x
f

7−→ x2 + 3.

This is written in λ-notation as: f = λx.x2+3. (In the functional programming
language Haskell, it is \x -> x^2+3.)

While abstraction is the operation to define a new function, computing it on
a specific argument is called application. We indicate it simply by juxtaposition:

f 5 = (λx.x2 + 3) 5 52 + 3 ∗ 28.

19

CHAPTER 2. λ-CALCULUS

As the example shows, the application of a λ-abstraction to an argument is
computed by replacing the abstraction variable with the argument. This is
called β-reduction and it is the basic computation step of λ-calculus.

The λ-notation is convenient to define functions, but you may think that
the actual computation work is done by the operations used in the body of the
abstraction: squaring and adding 3. However, the λ-calculus is a theory of pure

functions: terms are constructed using only abstraction an application, there
are no other basic operations. At first, this looks like a rather useless system:
no numbers, no arithmetic operations, no data structures, no programming
primitives. The surprising fact is that we don’t really need them. We don’t need
numbers (5, 3) and we don’t need operations (−2, +). They all can be defined
as purely functional constructions, built using only abstraction and application!

Syntax of λ-Calculus

The language of λ-calculus is extremely simple, we start with variables and
construct terms using only abstraction and computation. It’s BNF definition is
as follows (assume x, y, z range over a given infinite set of variable names).

t ::= x | y | z | · · · variable names
| λx.t abstraction
| t t application.

The β-reduction relation on term is defined, for every pair of terms t1 and t2 as:

(λx.t1) t2 β t1[x := t2].

The left-hand side means: in t1 substitute all occurrences of variable x with
the term t2. Substitution is actually quite tricky and its precise definition is a
bit more complex that replacing every occurrences of x with t2. One has to be
careful to manage variable occurrences properly.

We need some intermediate concept. The first is α-equivalence and it says
that, since the variable in an abstraction is just a place holder for an argument,
the names of abstracted variables does not matter. For example, the simplest
function we can define is the identity λx.x which takes an argument x and
returns it unchanged. Clearly, if we use a different variable name, λy.y, we get
exactly the same function. We say that the two terms (and any using different
variables) are α-equivalent:

λx.x =α λy.y =α λz.z =α · · · .

We are free to change the name of the abstracted variable any way we like.
However, we have to be careful to avoid variable capture. If the body of the
abstraction contains other variables than the abstracted one, we can’t change
the name to those:

λx.y (x z) =α λw.y (w z) 6=α λy.y (y z) 6=α λz.y (z z).

V Capretta 20 G54FOP, 2017

CHAPTER 2. λ-CALCULUS

The reason for this restriction is that changing the name of the abstracted
variable from x to either y or z in this example would capture the occurrence of
that variable which was free in the original term (not bound by a λ-abstraction).

Formally, we define set FV(t) of the variables that occur free in the term t,
by recursion on the structure of t:

FV(x) = {x}
FV(λx.t) = FV(t) \ {x}
FV(t1 t2) = FV(t1) ∪ FV(t2).

Another way in which a variable can be incorrectly captured is when we
perform a substitution that puts a term under an abstraction that may bind
some of its variables:

(λx.λy.x y) (y z) β (λy.x y)[x := (y z)] 6= λy.(y z) y.

If we replace x with (y z) in this way, the occurrence of the variable y (which
was free before performing the β-reduction) become bound. This is incorrect.
We should rename the abstraction variable before performing the substitution:

(λy.x y)[x := (y z)] =α (λw.xw)[x := (y z)] = λw.(y z)w.

To avoid problems with variable capture, we adopt the Barendregt variable

convention: before performing substitution (or any other operation on terms)
change the names of the abstracted variables so they are different from the free
variables and from each other.

With this convention, we can give a precise definition of substitution by
recursion on the structure of terms:

x[x := t2] = t2
y[x := t2] = y if y 6= x

(λy.t1)[x := t2] = λy.t1[x := t2]
(t0 t1)[x := t2] = t0[x := t2] t1[x := t2].

In the third case, the variable convention ensures that the variable y and the
bound variables in t2 have already been renamed so they avoid captures. In
more traditional formulations, one would add the requirements: “provided that
y 6= x and y doesn’t occur free in t2”.

A part from some complication about substitution, the λ-calculus is ex-
tremely simple. It seems at first surprising that we can actually do any serious
computation with it at all. But it turns out that all computable functions can
be represented by λ-terms. We see some simple function in this section and we
will discover how to represent data structures in the next.

For convenience, we use some conventions that allow us to save on paren-
theses.

• λ-abstraction associates to the right, so we write λx.λy.x for λx.(λy.x);

• Application associates to the left, so we write (t1 t2 t3) for ((t1 t2) t3);

V Capretta 21 G54FOP, 2017

CHAPTER 2. λ-CALCULUS

• We can use a single λ symbol followed by several variables to mean con-
secutive abstractions, so we write λx y.x for λx.λy.x.

Here are three very simple functions implemented as λ-terms:

• The identity function λx.x. When applied to an argument it simply re-
turns it unchanged:

(λx.x) t x[x := t] = t.

• The first projection function λx.λy.x. When applied to two arguments, it
returns the first:

(λx.λy.x) t1 t2 (λy.x)[x := t1] t2 = (λy.t1) t2 t1[y := t2] = t1.

Remember, in reading this reduction sequence, that we are adopting the
variable convention, so the variable y doesn’t occur free in t1.

• The second projection function λx.λy.x. When applied to two arguments,
it returns the second:

(λx.λy.y) t1 t2 (λy.y)[x := t1] t2 = (λy.y) t2 y[y := t2] = t2.

We can also say that the second projection is the function that, when
applied to an argument t1, returns the identity function λy.y.

Church Numerals

So far we have seen only some very basic functions that only return some of
their arguments unchanged. How can we define more interesting computations?
And first of all, how can we represent values and data structures? It is in fact
possible to represent any kind of data buy some λ-term.

Let’s start by representing natural numbers. Their encodings in λ-calculus
are called Church Numerals:

0 := λf.λx.x

1 := λf.λx.f x

2 := λf.λx.f (f x)
3 := λf.λx.f (f (f x))
· · · .

A numeral n is a function that takes two arguments, denoted by the variables
f and x, and applies f sequentially n times to x.

What is important is that we assign to every number a distinct λ-term in a
uniform way. We must choose our representation so it is easy to represent arith-
metic operations. The idea of Church numerals is nicely conceptual: numbers
are objects that we use to count things, so we can define them as the counters
of repeated application of a function.

V Capretta 22 G54FOP, 2017

CHAPTER 2. λ-CALCULUS

Let’s see if this representation is convenient from the programming point of
view: can we define basic operations on it?

Let’s start with the successor function, that increases a number by one:

succ := λn.λf.λx.f (n f x).

Let’s test if it works on an example: if we apply it to 2 we should get 3:

succ 2 = (λn.λf.λx.f (n f x)) 2
 λf.λx.f (2 f x) = λf.λx.f ((λf.λx.f (f x)) f x)
 λf.λx.f ((λx.f (f x))[f := f]x) = λf.λx.f ((λx.f (f x))x)
 λf.λx.f ((f (f x))[x := x]) = λf.λx.f (f (f x)) = 3.

We have explicitly marked the substitutions in this reduction sequence: they
are both trivial, substituting f with itself and x with itself. From now on, we’ll
do the substitutions on the fly, without marking them.

Other arithmetic operations can be defined by simple terms:

plus := λm.λn.λf.λx.mf (n f x)
mult := λm.λn.λf.m (n f)
exp := λm.λn.nm.

Verify by yourself that these terms correctly implement the addition, multipli-
cation and exponentiation functions. For example:

plus 2 3 ∗ 5
mult 2 3 ∗ 6
exp 2 3 ∗ 8
exp 2 3 ∗ 9.

Surprisingly, two other basic functions are much more difficult to define: the
predecessor and the (cut-off) subtraction functions. Try two define two terms
pred and minus such that:

pred 3 ∗ 2
pred 0 ∗ 0
minus 5 2 ∗ 3
minus 2 5 ∗ 0.

Other Data Structures

Other data types can be encoded in the λ-calculus.

Booleans For truth values we may choose the first and second projects that
we defined earlier:

true := λx.λy.x

false := λx.λy.y.

V Capretta 23 G54FOP, 2017

CHAPTER 2. λ-CALCULUS

We must show how to compute the logical operators. For example, conjunction
can be defined as follows:

and := λa.λb.a b false.

Let’s verify that it give the correct results when applied to Boolean values:

and true true = (λa.λb.a b false) true true

∗ true true false = (λx.λy.x) true false ∗ true

and true false = (λa.λb.a b false) true false

∗ true false false = (λx.λy.x) false false ∗ false

and false t = (λa.λb.a b false) false t

∗ false t false = (λx.λy.y) t false ∗ false

All the other logical operators could be defined if we had a conditional con-
struct if − then− else−. In fact this can be defined very easily:

if := λb.λu.λv.b u v.

Let’s verify that it has the correct computational behaviour:

if true t1 t2 = (λb.λu.λv.b u v) true t1 t2

∗ true t1 t2 = (λx.λy.x) t1 t2
∗ t1

if false t1 t2 = (λb.λu.λv.b u v) false t1 t2

∗ false t1 t2 = (λx.λy.y) t1 t2
∗ t2.

Then we can define all logical connectives as conditionals, for example:

and := λa.λb.if a b false, or := λa.λb.if a true b, not := λa.if a false true.

Tuples Pairs of λ-terms can be encoded by a single term: If t1 and t2 are
terms, we define the encoding of the pair as

〈t1, t2〉 := λx.x t1 t2.

First and second projections are obtained by applying a pair to the familiar
projections (or truth values) that we have already seen:

fst p = p (λx.λy.x)
snd p = p (λx.λy.y)

We can verify that they have the correct reduction behaviour:

fst 〈t1, t2〉 = 〈t1, t2〉 (λx.λy.x) = (λx.x t1 t2) (λx.λy.x) (λx.λy.x) t1 t2
∗ t1,

snd 〈t1, t2〉 = 〈t1, t2〉 (λx.λy.y) = (λx.x t1 t2) (λx.λy.y) (λx.λy.y) t1 t2
∗ t2.

Triples and longer tuples may be encoded as repeated pairs, for exam-
ple 〈t1, t2, t3〉 := 〈t1, 〈t2, t3〉〉, or directly using the same idea as for pairs:
〈t1, t2, t3〉 := λx.x t1 t2 t3.

V Capretta 24 G54FOP, 2017

CHAPTER 2. λ-CALCULUS

Lists TO DO [They can be represented as repeated tuples. But we need to

have a nil element to represent the empty list. This can be done by putting a

Boolean in front to signal whether the list is empty or continues.]

Binary Trees TO DO [Similarly: tupling the label and the subtrees, with a

Boolean to signal the leaves.]

Syntax Trees

As for any structured language, there is a representation of λ-terms as abstract
syntax trees. We have binary nodes representing application, unary nodes rep-
resenting abstraction and leaves representing variable occurrences. For example,
the Church numeral 2 = λf.λx.f (f x) is represented by this tree:

λf

λx

app

f app

f x

A more efficient representation uses term graphs: bound variable occurrences
point to the abstraction node for that variable and we allow sharing by letting
different edges point at the same subgraph:

2 = λf

λx

app

app

λx.λy.(y x) (y x) = λx

λy

app

app

In this formalism, we don’t need to explicitly write the variable names on the
abstraction nodes, since they are not necessary to determine which variable
occurrences are bound by them. This is convenient, because we don’t need to

V Capretta 25 G54FOP, 2017

CHAPTER 2. λ-CALCULUS

worry about α-equivalence any more:

2 = λ

λ

app

app

λx.λy.(y x) (y x) = λ

λ

app

app

Representing terms in this way is more efficient in several ways. When we make
some reduction rules inside a subterm, we have to do it just ones, while if every
occurrence were represented by a separate subtree, we would have to reduce each
one separately. One has to be careful anyway: sometimes terms are modified in
one way in one branch but not on others. In that case the subgraph has to be
duplicated.

Confluence

A λ-term may contain several redexes. We have the choice of which one to
reduce first. When we make one step of β-reduction, some of the redexes that
were there in the beginning may disappear, some may be duplicated into many
copies, some new ones may be created. Although we say that β-reduction is a
“simplification” of the term, in the sense that we eliminate a pair of consecutive
abstraction and application by immediately performing the associated substitu-
tion, the resulting reduced term is not always simpler. It may actually be much
longer and complicated.

Therefore it is not obvious that, if we choose different redexes to simplify,
we will eventually get the same result. It is also not clear whether the reduction
of a term will eventually terminate.

The first property is anyway true. But there are indeed terms whose reduc-
tion does not terminate.

Theorem 7 (Confluence) Given any λ-term t, if t1 and t2 are two reducts of

it, that is t ∗ t1 and t ∗ t2; then there exists a common reduct t3 such that

t1
∗ t3 and t2

∗ t3.

TO DO [Proof]

Definition 8 A normal form is a λ-term that doesn’t contain any redexes. A

term weakly normalizes if there is a sequence of reduction steps that ends in

a normal form. A term strongly normalizes if any sequence of reduction steps

eventually ends in a normal form.

V Capretta 26 G54FOP, 2017

CHAPTER 2. λ-CALCULUS

There exist terms that do not normalize. The most famous one is a very
short expression that reduces to itself:

ω := (λx.x x) (λx.x x)
 (xx)[x := λx.x x] = (λx.x x) (λx.x x) = ω

 ω · · · .

There are also terms that grow without bound when we reduce them, for exam-
ple:

(λx.x x x) (λx.x x x) (λx.x x x) (λx.x x x) (λx.x x x)
 (λx.x x x) (λx.x x x) (λx.x x x) (λx.x x x)
 · · · .

Here is an example of a term that weakly normalizes but doesn’t strongly
normalize:

(λx.λy.x) (λz.z)ω.

This terms applies the first projection function to to arguments. If we imme-
diately reduce the application of the projection, the argument ω disappear and
we are left with the identity function, which is a normal form:

(λx.λy.x) (λz.z)ω λz.z.

However, if we try to reduce the redex inside the second argument, we don’t
make any progress and we could continue reducing it forever.

V Capretta 27 G54FOP, 2017

