
V Capretta 36 G54FOP, 2017

Chapter 4

Simple Types: λ→

Although the untyped λ-calculus is a Turing-complete programming language,
it is a bit inconvenient in some respects. There is only one kind of things: λ-
term. They represent both data structures and functions. Any term can be
applied to any other term.

If we try to define a denotational semantics for it, we encounter a size prob-
lem. Let’s say that we interpret λ-terms as elements of a set Λ. Since each
term can also be applied to any other term, it is also a function, so an element
of Λ should at the same time be element of the set Λ → Λ. Vice versa, since
a function defined by abstraction is a term, we should have that an element of
Λ → Λ should at the same time be element of Λ. We should look for a domain of
interpretation in which the two coincide, or are at least isomorphic: Λ ∼= Λ → Λ.
But that is impossible: the size of Λ → Λ is always bigger than the size of Λ.

The solution to this conundrum is to restrict the set of functions we use:
instead of all of Λ → Λ we must take a subset of it Λ →c Λ, small enough to
be in bijection with Λ but big enough to contain all the functions defined by
abstraction. The search for such a space leads to the notion of Scott domain

and is the basis of the field of domain theory, which we are not treating in this
book.

A part from this difficulty in defining an appropriate denotational seman-
tics, there are more practical programming reasons to be unhappy with the
undifferentiated nature of λ-terms.

We saw how different data types can be represented, Boolean, numerals,
pairs, lists, streams, and so on. But the notion of type does not exist in the
system itself. It is up to us to recognize that a certain term represent a number
or a truth value. In some cases we have adopted the same term to represent
things of different types. For example, the term (λx.λy.y) denotes the second
projection of a pair, the truth value false, the numeral 0 (up to α-equivalence:
(λx.λy.y) =α (λf.λx.x)). How do we know which one of these interpretations
is meant when we encounter it?

For this and several other reasons, it is convenient to introduce types. Instead
of having all terms belong to the same undifferentiated set of objects, we want

37

CHAPTER 4. SIMPLE TYPES: λ→

to assign to each term a different type, so numerals will belong to a type of
natural numbers, truth values to a type of Booleans, pairs to a product type
and so on.

The following are a few of the advantages of typed systems.

Readability: Pure λ-terms are very difficult to read for human users. A large
term, representing a complex data structure or a sophisticated algorithm,
is quite unreadable. With types, we give the human mind some informa-
tion about what a program does, making it easier to understand.

Correctness: Untyped programs give no guarantee that they are correct. There
is no restriction on what kind of input they can be applied to and what
kind of output they produce. With types, we can impose a basic level
of soundness, even if it is just about the types of input and output. For
example, we can make sure that a certain program will only accept a natu-
ral number as argument and will produce a Boolean value as result. With
richer type system, we will be able to specify stronger correctness con-
straints. With dependent types we can have a guarantee that a program
computes exactly the function that it is intended to implement.

Meaningfulness: With types, we can outlaw meaningless terms. In the un-
typed λ-calculus we are allowed to apply the multiplication operator be-
tween a Boolean and a pair of functions, or to try to compute the factorial
of a binary tree. We can mix different constructors, for example trying to
take the successor of a stream. This freedom can be very confusing. With
types, we put a limit on how object are constructed and make sure that
terms are always meaningful.

Efficiency: In the untyped λ-calculus there is only one computation mecha-
nism: β-reduction. It is used in evaluating programs on any data types.
This may be very inefficient. If we have different types for different data
structures, then we can introduce specific computation methods for each
type, making the whole system more efficient.

General Form of Typing Rules

In a type system, we have two kinds of expressions: terms denote single objects
or values, types denote collections or sets of objects. The rules of each system
specify how to build types and terms and how to assign a type to terms.

A typing assertion is a formula of the form t : T . It states that the term t

belongs to the type T .
If a term contains free variables, its type will depend on the type of the

variables. So we need to specify an assignment of types to variables. This is
called a context and has the form of a sequence of pairings of variables and
types. For example the context x : A, y : B, z : C specifies that the variable x

stands for an object of type A, y stands for an object of type B and z for an

V Capretta 38 G54FOP, 2017

CHAPTER 4. SIMPLE TYPES: λ→

object of C. We usually denote contexts with capital Greek letters, most often
Γ.

As we said, the type of a term depends on the type of its free variables. So
a typing assertion makes sense only in a certain context. A typing judgment is
a formula of the form

Γ ⊢ t : T

meaning: if we assume that the variable x has type A, the variable y has type
B and the variable z has type C, then we can deduce that the term t has type
T . The rules of a typing system specify how to derive typing judgments and
have the following general form:

Γ0 ⊢ t0 : T0 · · · Γn ⊢ tn : Tn

Γ ⊢ t : T

This rule means: if we have derived that in context Γ0 the term t0 has type T0

and so on; then we can deduce that in context Γ the term t has type T . The
judgments in the assumptions can have a different context from the conclusions
and among themselves.

However, many typing rules have the same context on the assumptions and
the conclusion. When this happens, we may leave the context out and only
write the typing assertions:

t0 : T0 · · · tn : Tn

t : T

Arithmetic Expressions.

As a first example, let’s see a typing system for the language of arithmetic
expressions of Chapter 1 That language doesn’t have variables at all, so con-
texts are not needed. The terms denotes either natural numbers or Booleans.
We remarked before that some meaningless terms are possible, for example
(succ false) and (if (pred zero) then zero else true). With types, we make sure that
these nonsensical terms are not allowed any more. We only have the two types
corresponding to the two kinds of terms we want to allow:

T ::=Nat | Bool.

The typing rules allow us to apply the constructors only to arguments of the
correct type and specify to what type the result belongs. First we have rules
assigning types to the constants; they don’t need any assumption.

true : Bool false : Bool zero : Nat

Then we have rules unary operators, specifying the type of the argument in the
assumption and of the result in the conclusion.

t : Nat
succ t : Nat

t : Nat
pred t : Nat

t : Nat
isZero t : Bool

V Capretta 39 G54FOP, 2017

CHAPTER 4. SIMPLE TYPES: λ→

Finally, the rule for the conditional operator requires that the first argument
(the test expression) is a Booleans and lets the second and third arguments to
be of any type, as long as it is the same for both; the result belongs to this same
type.

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

Here is an example of the derivation of a typing assertion in this system.

zero : Nat
succ zero : Nat

isZero (succ zero) : Bool zero : Nat
zero : Nat

pred zero : Nat
if (isZero (succ zero)) then zero else (pred zero) : Nat

If you try to write a derivation for the meaningless terms we saw earlier, you
will realize quickly that it is impossible to give one.

Simply Typed λ-calculus: λ→

Now we come to a typing system for the λ-calculus. There are two ways to
define it.

The first typing method is to keep the λ-terms as they were in the untyped
calculus and just give rules to assign types to them, similarly to what we have
done for arithmetic expressions. This is called typing à la Curry (from the name
of American mathematician Haskell Curry, who invented it).

The second typing method uses a different syntax for terms: in λ-abstractions
we explicitly specify the type of the abstracted variable. This is important if we
want a term to have a unique type (in Curry-style typing abstracted variables
do not have a fixed types, so a term may have many different types). So instead
of the untyped abstraction (λx.t), we write (λx : A.t) where A is a type. So we
assign the type A to x inside the term itself. This is called typing à la Church

and is the one we adopt.
In the example of arithmetic expressions and in typing à la Curry, we take

a set of untyped expressions and we use typing rules to assign types to some of
them. In typing à la Church, instead, we construct correct terms by using the
rules at the same time as we give types to them.

The first system we look at has the simplest set of types: we have one basic
type o and a operator (→) to construct types of functions:

T ::= o | T → T.

We then have typing rules for variables, abstraction and application:

Variable

Γ ⊢ x : T if (x : T) ∈ Γ

V Capretta 40 G54FOP, 2017

CHAPTER 4. SIMPLE TYPES: λ→

The side condition (x : T) ∈ Γ is not required as an assumption but is just
a verification. In applying the rule, we must check the context Γ contains
the assignment of the type T to the variable x. The rule says that then
we can derive that x has type T without any assumption.

Abstraction

Γ, x : A ⊢ t : B
Γ ⊢ (λx : A.t) : B

The assumption has a different context than the conclusion. The context
of the assumption is Γ, x : A, so we require a derivation that t is in type
B, when the free variables have the types specified in Γ extended with
the typing assignment for x; x can occur in t as a free variable. In the
conclusion, the variable x has been abstracted, so it doesn’t occur free in
the term (λx : A.t). We don’t need to assign a type to it in the context.
Instead it is given the type A directly by the λ-abstraction. The type of
the conclusion states that (λx : A.t) is a function that maps arguments of
type A to results of type B.

Application

Γ ⊢ f : A → B Γ ⊢ a : A
Γ ⊢ (f a) : B

this rule states that we can apply a term f to an argument a only if f has
a function type with domain A and a has that type. The result will have
the type of the codomain of f .

To save some parentheses in writing the types, we use the convention that
→ associates to the right, so the type (o → (o → o)) can be written o → o → o;
it’s the type of functions that take two arguments of type o and return a result
of type o. On the other hand, we cannot omit parentheses around a subtype on
the left: (o → o) → o must keep its parentheses; it is the type of functions that
take as argument a function of type o → o and return a result of type o.

The following are examples of correct types in app:

o, o → o, (o → o) → o → o, ((o → o) → o) → (o → o) → o.

The reduction rule for λ→ is the same as for the untyped λ-calculus, with
the only difference that the abstracted variables is typed; but this doesn’t make
any difference in the computation:

(λx : A.t1) t2 β t1[x := t2].

The typing rules guarantee that this redex can exist only if the argument term
t2 has type A.

V Capretta 41 G54FOP, 2017

CHAPTER 4. SIMPLE TYPES: λ→

Here is an example of a full derivation of a typing judgment (to make it fit
into the page, we use the abbreviation Γf,x for the context f : o → o, x : o):

Γf,x ⊢ f : o → o

Γf,x ⊢ f : o → o Γf,x ⊢ x : o
Γf,x ⊢ f x : o

Γf,x ⊢ f (f x) : o
f : o → o ⊢ λx : o.f (f x) : o → o

⊢ λf : o → o.λx : o.f (f x) : (o → o) → o → o

The final judgment has an empty context (there is nothing on the left of ⊢),
indicating that the term λf : o → o.λx : o.f (f x) is closed, it doesn’t have any
free variable.

Numbers and operations in λ→

You will recognize the previous term as being a typed version of the Church
numeral 2. We can give the same type (o → o) → o → o to every Church
numeral. The converse is also true: every closed term in normal form with type
(o → o) → o → o is a Church numeral. This suggests that this type can be used
as the type of natural numbers, let’s call it Nato.

But if we assign different types to the variables f and x, we can have Church
numerals with different types. It must anyway be true that if x has type T , then
f must have type T → T , so we can apply f to x and obtain a term to which f

can be applied again. You can verify that, with essentially the same derivation
as before, the following typing judgment is correct for every type T :

⊢ λf : T → T.λx : T.f (f x) : (T → T) → T → T.

So we have other types of naturals with a different base type:

NatT = (T → T) → T → T.

What’s important, in order to use λ→ as a programming language, is not just
that we can exactly represent numbers in the type Nato, but that we can define
functions on them. So is it possible first of all to define the basic arithmetic
operations? To start, let’s take the term that we used to represent addition and
see if, when we assign types to the abstracted variables, we obtain a correct
term of numeric type. The term was plus = λm.λn.λf.λx.mf (n f x). We want
it to be a function that takes two natural numbers as arguments and returns
a natural number, so it should have the type Nato → Nato → Nato. The two
argument variables m and n must both have type Nato and the variables f and
x should have the same type that we gave them in the Church numerals. In
fact, you can verify that the following typing judgment is derivable:

⊢ λm : Nato.λn : Nato.λf : o → o.λx : o.m f (n f x) : Nato → Nato → Nato.

We can call this plus
o
and we can also verify that we can replace o with any

type T and obtain an higher-order version plusT .

V Capretta 42 G54FOP, 2017

CHAPTER 4. SIMPLE TYPES: λ→

Exercise 9 Verify that the multiplication combinator in the untyped λ-calculus,

mult = λm.λn.λf.m (n f) can be typed in a similar way, giving us terms multT
in λ→ for every type T .

But not all operations that we could implement in the untyped λ-calculus
can be imported in λ→ . For example, see what happens when we try to type
the exponential combinator exp = λm.λn.nm. If we give both m and n the
same type NatT , then it is forbidden to apply n to m, so the term is illegal. We
can still give a type to exp by giving different level types to the two variables:

⊢ λm : NT .λn : NT→T .nm : NT .

However, this is inconvenient because it forces us to distinguish numbers at
different levels. For example, it would be impossible to define the operation
mn + n.

Other simple combinators that can be adapted from their untyped version
are:

Identity: idT := λx : T.x : T → T ;

Projections: λx : A.λy : B.x : A → B → A,

λx : A.λy : B.x : A → B → B;

Booleans: trueT := λx : T.λy : T.x : T → T → T,

falseT := λx : T.λy : T.y : T → T → T,

so we can let BoolT := T → T → T ;

Properties of λ→

The type system λ→ enjoys some important formal properties that ensure that
the type assignments are sound and safe.

Progress: A closed typed term is either a value or can be reduced.

Preservation (Subject Reduction): Reduction preserves the type of terms.
If Γ ⊢ t : T and t ∗ t′, then Γ ⊢ t′ : T .

Confluence: It still holds, similarly to the untyped λ-calculus.

Normalization: Every term can be reduced to a (unique) normal form. In
fact we have strong normalization: Every reduction sequence will lead
to the unique normal form.

TO DO [Proofs of all these properties. We can prove progress and preser-

vation by induction on the structure of the terms. The proof of confluence can be

adapted from that for the untyped λ-calculus. The proof of normalization is more

challenging. It was first done by Turing using double induction on the types of

redexes and the number of redexes of highest type.]

V Capretta 43 G54FOP, 2017

