
V Capretta 44 G54FOP, 2017

Chapter 5

System T

We have seen that the simple types of λ→ allow us to define only a limited class
of operations. We can program addition and multiplication but not exponenti-
ation. Not even the predecessor function is representable.

The reason for this limitation is the poverty of the type that we chose to
represent the natural numbers. As we know, Church numerals are iterators:
they allow us to iterate a certain function a number of times, starting with a
given value. When we give types to the numerals, we also restrict the type of
the function that can be iterated and of the starting value. So, if we choose
Nato = (o → o) → o → o we can only iterate functions of type o → o with
a starting value of type o. We have seen that this is not sufficient for the
exponential function, that needs to iterate a function of higher type.

In general, with NatT we can only do iteration that returns a result of type T
by iterating a function of type T → T . But sometimes we need to do iteration at
a different type than the one we eventually return. It is not in general possible
to move from NatT to NatS when T and S are different types.

When it comes to the predecessor function, in the untyped λ-calculus we
used pairs as a result, storing in the result type both the present input and its
predecessor. If we want to implement it in λ→ we need to have an iterator with
a type of pairs as its result. It is possible to define a type of pairs of naturals
(using the same ideas as the pairing combinator in λ-calculus), call it Nat×Nat.
But then we would need to use NatNat×Nat to do the appropriate iteration and
we wouldn’t be ably to lift an argument of type Nato to it. (To fully realize this,
try to take the definition of pred and translate it to λ→ ; you will notice that
at a certain point the types don’t match any more.)

To overcome these limitations, we introduce a special type of numbers Nat,
instead of defining it in terms of the dummy type o. Nat will have special
rules for constructing elements and defining functions by recursion. The system
obtained by replacing o with this new Nat is called system T . It was invented
by Kurt Gödel, originally as an method to prove the consistency of Arithmetic.
system T enjoys most of the nice formal properties of λ→ and it is much more
expressive.

45

CHAPTER 5. SYSTEM T

Syntax of system T

The class of types of system T is defined by

T ::=Nat | T → T.

The rules are the same as for λ→ with the addition of specific rules for Nat.
(The contexts remain the same between the assumptions and the conclusion, so
we leave them out.)

Introduction Rules

zero : Nat
n : Nat

(succn) : Nat

As usual we use the notation n for numerals represented in the system.
For example 2 = succ (succ zero).

Elimination Rules

h : Nat → T → T a : T n : Nat
recT h an : T

This rule can be instantiated for any type T , so it is actually a family of
rules, one for each type.

Reduction rules (ι-reduction)

recT h a 0 a

recT h a (succn) hn (recT h an)

This way of dividing the rules in three groups is common and we will use it
for all our new types: introduction rules to specify how elements of the type are
constructed, elimination rules to specify how we define function on the type,
reduction rule to specify how those functions are computed.

A recursive function defined by equations can be translated into a system

T term that uses the recursor rec. For example the addition function can be
given by the following equations:

plus : Nat → Nat → Nat

plusm 0 = m

plusm (n+ 1) = (plusmn) + 1

it translates to the term

plus = λm : Nat.λn : Nat.recNat (λx : Nat.λk : Nat.succ k)mn.

Let’s introduce some notations and conventions to make system T terms
simpler and easier to write and read. I’ll illustrate each convention by rewriting
the plus definition.

V Capretta 46 G54FOP, 2017

CHAPTER 5. SYSTEM T

First of all, we don’t need to write the type of the abstracted variable all the
time. This type can be deduced from the overall type of the term, so we may
leave it implicit.

plus = λm.λn.recNat (λx.λk.succ k)mn.

Also the type parameter of the recursor can be deduced from the type of
result we want, so we can leave that implicit as well. (We will still write it out
in some cases when we want to stress it, for example later when we define the
Ackermann function.)

plus = λm.λn.rec (λx.λk.succ k)mn.

The elimination rule has a number n as premise and the conclusion is a term
of type T . Most of the time we use it to define a function of type Nat → T .
Officially, we would have to write it as λn.rech an. But we allow ourselves to
simply leave the main argument implicit and write rech a.

plus = λm.rec (λx.λk.succ k)m.

In this case, we may even decide leave the base case of the recursion (the argu-
ment m) implicit.

plus = rec (λx.λk.succ k).

In other words, we treat rec as if it were itself a term of system T , rather than
an operator that must be applied to three arguments to return a term. So we
identify rec with λf.λa.λn.rec f a n.

Finally, to connect the recursor version with the definition by equations, we
may give more suggestive names to some of the variables. For example, in the
plus case (let’s go back to the version with explicit m) the variable x stands
from the parameter n in the second recursive equations, so let’s give it that
name. The variable k stands for the result of the recursive call to n: it will be
instantiated with plusmn in the reduction rules. So we can give it the suggestive
variable name plus·m·n.

plus = λm.rec (λn.λplus·m·n.succ plus·m·n)m.

This makes the correspondence with the definition by equations more direct,
but you must be careful to understand that plus·m·n is just a variable, it’s not
at term obtained by applying plus to m and n. This said, we can read the first
argument of rec as a step case: a function that, given a number n and the result
plus·m·n of applying plus to m and n, it returns the value of applying plus to m

and succn. The second argument gives the result of the base case plusm zero.

Similarly, the multiplication function can be defined as follows:

mult : Nat → Nat → Nat

mult = λm.rec (λn.λmult·m·n.plusmult·m·nm) zero.

V Capretta 47 G54FOP, 2017

CHAPTER 5. SYSTEM T

It becomes now easy to define functions that were impossible in the lim-
ited iteration formalism of λ→ . The exponential is as easy as addition and
multiplication:

exp : Nat → Nat → Nat

exp = λm.rec (λn.λexp·m·n.mult exp·m·nm) 1.

The predecessor is immediate: we don’t need an auxiliary function that
produces a pair of result, but we can simply return the numerical parameter in
the recursive step:

pred : Nat → Nat → Nat

pred = rec (λn.λk.n) zero.

Finally, we formalize the factorial. Remember its informal equation-based
definition:

fact : Nat → Nat

fact 0 = 1
fact (n+ 1) = (factn) · (n+ 1).

In system T this becomes:

fact = rec (λn.λfact·n.mult fact·n (succn)) 1.

Higher-Order Recursion

One of the great advantages of system T is that it allows us to do higher-order

recursion, that is, recursion where the result has a function type. Since we can
use recT with any type T , T can have any complex structure, for example it can
be Nat → Nat.

A famous example that requires higher-order recursion is the Ackermann

function, defined like this:

ack : Nat → Nat → Nat

ack 0n = n

ack (m+ 1) 0 = ackm 1
ack (m+ 1) (n+ 1) = ackm (ack (m+ 1)n)

In the last of the three equations, we have two recursive calls to ack, nested one
inside the other. The justification for this definition, that is, the reason why we
believe that it always computes a result, is that in both recursive calls one of
the two parameters decreases: in the first call, we have m in place of (m+1), in
the second call (m + 1) remains the same but the second parameter goes from
(n+ 1) to n.

When we implement the Ackermann function in system T , we need two
recursions to justify both recursive calls independently. The first one is a higher-
order recursion. For this example we explicitly write the type T in recT to stress

V Capretta 48 G54FOP, 2017

CHAPTER 5. SYSTEM T

this.

ack = recNat→Nat (λm.λack·m.recNat (λn.λack·Sm·n.ack·m ack·Sm·n)
(ack·m 1))

(λn.n)

Here’s how we can read this definition. The top operator is recNat→Nat, telling
us that we are doing recursion with the higher result type Nat → Nat. So ack

will map every number to a function from numbers to numbers. The second
argument gives the result that is returned when the input is zero: in that case
we return the identity function (λn.n). This corresponds to the first equation,
saying that ack zeron n.

The first argument of the top operator tells us what to do if the input is
not zero: the two variables m and ack·m tell us that we are in the case where
we try to compute ack (succm) and we use the variable ack·m to denote ackm.
Notice that the type of this variable is Nat → Nat. the body of this abstraction
is the result we must return for ack (succm), which also must have the type
Nat → Nat.

We do this by another recursion (now matching the second argument n),
this time at the first order using recNat. The second argument of this second
recursion is the result that must be return when the second argument is zero,
that is the result of ack (succm) zero. We know this must be ackm 1 and we
already have the variable ack·m denoting the function ackm, so we just return
(ack·m 1). The first argument of the second recursion is for the case when the
second argument is not zero, so we are computing ack (succm) (succn). The
abstracted variable ack·Sm·n denotes the result of ack (succm)n. The body of the
recursion must give, for ack (succm) (succn), the result ackm (ack (succm)n).
Since we have variables ack·m and ack·Sm·n representing the function ackm and
the value ack (succm)n we can just apply one to the other: ack·m ack·Sm·n.

Another example where higher-order recursion comes useful is the Fibonacci
sequence. In the untyped λ-calculus implementation, we used an auxiliary func-
tion that returned two values, the present Fibonacci number and the next one.
We may use the same trick in system T : There is no predefined type of pairs,
but we may realize a Cartesian product by using the same encoding for pairs as
we did there:

Nat× Nat = (Nat → Nat → Nat) → Nat

〈n,m〉 = λx.x nm

π1 p = p (λx.λy.x)
π2 p = p (λx.λy.y)

I leave it to you as an exercise to implement the auxiliary function fibaux and then
fib following the outline of what we did in Chapter 3. (The type Nat×Nat and
the pairing and projection functions can also be defined in λ→ . However, if we
try to follow the same strategy to implement fib, we run into typing problems.
It is an instructive exercise to try it and see where things go wrong.)

However, the Fibonacci function can also be implemented without any en-
coding for pairs, exploiting higher-order recursion. The trick is to change the

V Capretta 49 G54FOP, 2017

CHAPTER 5. SYSTEM T

return type, not making it a Cartesian product, but a type of functions of
two arguments. We define a different auxiliary function fibfrom which takes as
argument the starting values of the Fibonacci sequence. For the traditional se-
quence, the starting values are 0 and 1, but we could decide to start from other
beginnings. Informally it is defined like this:

fibfrom : Nat → (Nat → Nat → Nat)
fibfrom 0 a b = a

fibfrom (n+ 1) a b = fibfrom n b (a+ b)

I have put the recursive argument first, so I can see this definition as being a
recursive function on it that returns a value of type Nat → Nat → Nat. I also
enclosed this result type in parentheses to stress this fact. This can readily be
translated in system T :

fibfrom = recNat→Nat→Nat (λn.λfibf·n.λa.λb.fibf·n b (plus a b)) (λa.λb.a)

Then it is easy to recover the traditional Fibonacci function:

fib : Nat → Nat

fib = λn.fibfrom n 0 1.

Properties of system T

The same properties that we saw for λ→ hold also for system T : Progress,
Preservation, Confluence and Normalization. This guarantees that programs
written in system T are sound and always terminate.

In addition, the expressive power of system T is much larger than that of
λ→ . While in λ→ we can only implement extended polynomials, in system T

we can implement all functions that can be proved total in first order Arithmetic.
TO DO [Formal proofs of the properties. More about expressive power: we

can encode recursion on ordinals below ǫ0. Example of a function that cannot be

represented: the Goodstein sequence.]

V Capretta 50 G54FOP, 2017

